In this paper, we study the problem of modeling users' diverse interests. Previous methods usually learn a fixed user representation, which has a limited ability to represent distinct interests of a user. In order to model users' various interests, we propose a Memory Attention-aware Recommender System (MARS). MARS utilizes a memory component and a novel attentional mechanism to learn deep \textit{adaptive user representations}. Trained in an end-to-end fashion, MARS adaptively summarizes users' interests. In the experiments, MARS outperforms seven state-of-the-art methods on three real-world datasets in terms of recall and mean average precision. We also demonstrate that MARS has a great interpretability to explain its recommendation results, which is important in many recommendation scenarios.
翻译:在本文中,我们研究了建立用户不同利益模型的问题。以前的方法通常学习固定用户代表制,它代表用户的不同利益的能力有限。为了建立用户的不同利益模型,我们建议采用记忆关注建议系统(MARS)。MARS利用记忆部分和新的关注机制来学习深层次的\ textit{适应用户代表制 。在终端到终端的训练中,MARS适应性地总结了用户的利益。在实验中,MARS在三个真实世界数据集的回顾和平均精确度方面超过了七个最先进的方法。我们还表明,MARS在解释其建议结果方面有很大的可解释性,这在许多建议设想中都很重要。