Predicting the road traffic speed is a challenging task due to different types of roads, abrupt speed changes, and spatial dependencies between roads, which requires the modeling of dynamically changing spatial dependencies among roads and temporal patterns over long input sequences. This paper proposes a novel Spatio-Temporal Graph Attention (STGRAT) that effectively captures the spatio-temporal dynamics in road networks. The features of our approach mainly include spatial attention, temporal attention, and spatial sentinel vectors. The spatial attention takes the graph structure information (e.g., distance between roads) and dynamically adjusts spatial correlation based on road states. The temporal attention is responsible for capturing traffic speed changes, while the sentinel vectors allow the model to retrieve new features from spatially correlated nodes or preserve existing features. The experimental results show that STGRAT outperforms existing models, especially in difficult conditions where traffic speeds rapidly change (e.g., rush hours). We additionally provide a qualitative study to analyze when and where STGRAT mainly attended to make accurate predictions during a rush-hour time.


翻译:预测道路交通速度是一项具有挑战性的任务,原因是道路类型不同,速度变化突然,道路之间的空间依赖性不同,道路之间的空间依赖性也不同,这要求对道路之间的空间依赖性动态变化和长输入序列的时间模式进行建模。本文件提出一个新的Spatio-Temoal Patoral Patorat Convention(STGRAT)(STGRAT)(STGRAAT)(STGRAAT),该模型有效地捕捉了道路网络空间-时空动态动态。我们的方法特征主要包括空间关注、时间关注和空间监控矢量。空间关注包括图表结构信息(例如道路之间的距离)和动态调整基于道路状态的空间相关性。时间关注是捕捉交通速度变化的责任,而哨载矢量则允许该模型从空间相关节点中检索新特征或保存现有特征。实验结果表明,STGRAAT(STGRAAT)比现有模型(特别是在交通速度迅速变化的困难条件下(e.g,高峰时)。我们提供了一项定性研究,以分析STGRAAT)主要在高峰时间里作出准确预测的时间。

9
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
110+阅读 · 2020年2月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
VIP会员
相关VIP内容
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
110+阅读 · 2020年2月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Top
微信扫码咨询专知VIP会员