Person re-identification is a critical privacy attack in publicly shared healthcare data as per Health Insurance Portability and Accountability Act (HIPAA) privacy rule. In this paper, we investigate the possibility of a new type of privacy attack, Person Re-identification Attack (PRI-attack) on publicly shared privacy insensitive wearable data. We investigate user's specific biometric signature in terms of two contextual biometric traits, physiological (photoplethysmography and electrodermal activity) and physical (accelerometer) contexts. In this regard, we develop a Multi-Modal Siamese Convolutional Neural Network (mmSNN) model. The framework learns the spatial and temporal information individually and combines them together in a modified weighted cost with an objective of predicting a person's identity. We evaluated our proposed model using real-time collected data from 3 collected datasets and one publicly available dataset. Our proposed framework shows that PPG-based breathing rate and heart rate in conjunction with hand gesture contexts can be utilized by attackers to re-identify user's identity (max. 71%) from HIPAA compliant wearable data. Given publicly placed camera can estimate heart rate and breathing rate along with hand gestures remotely, person re-identification using them imposes a significant threat to future HIPAA compliant server which requires a better encryption method to store wearable healthcare data.
翻译:根据《健康保险便捷和问责制法》的隐私规则,重新确定个人身份是公共共享保健数据中的重大隐私攻击。在本文件中,我们调查了在公共共享隐私不敏感磨损数据上进行新型隐私攻击的可能性,即对公开共享隐私不敏感磨损数据进行个人身份重新识别攻击(PRI-攻击)。我们调查了用户在两种背景生物鉴别特征、生理(phoptomysmysmysoma和电极活动)和物理(加速计)背景下的具体生物鉴别特征。在这方面,我们开发了多模型Siamese Convolution Neural网络(mmSNNN)模型。该框架单独学习了空间和时间信息,并将这些信息与经修改的加权成本结合起来,以预测一个人的身份。我们利用从3个收集的数据集和1个公开可获取的数据集实时收集的数据,对我们的模型进行了评估。我们提议的框架表明,基于PPGP的呼吸率和心率与手势姿态环境可以被攻击者重新确定用户身份(最高值 71%) 。该框架单独学习时间信息,同时要求采用可接受的存储式服务器的服务器进行更精确的服务器数据,并使用一个可更新的服务器的存储式数据。