Recent advancements in deep learning have created many opportunities to solve real-world problems that remained unsolved for more than a decade. Automatic caption generation is a major research field, and the research community has done a lot of work on it in most common languages like English. Urdu is the national language of Pakistan and also much spoken and understood in the sub-continent region of Pakistan-India, and yet no work has been done for Urdu language caption generation. Our research aims to fill this gap by developing an attention-based deep learning model using techniques of sequence modeling specialized for the Urdu language. We have prepared a dataset in the Urdu language by translating a subset of the "Flickr8k" dataset containing 700 'man' images. We evaluate our proposed technique on this dataset and show that it can achieve a BLEU score of 0.83 in the Urdu language. We improve on the previous state-of-the-art by using better CNN architectures and optimization techniques. Furthermore, we provide a discussion on how the generated captions can be made correct grammar-wise.
翻译:最近深层次学习的进步创造了许多机会,解决实际世界问题,而这些问题在十多年内仍未解决。自动字幕生成是一个主要的研究领域,研究界已经用英语等最常见语言做了大量工作。乌尔都语是巴基斯坦的国语,也是巴基斯坦-印度次大陆地区的多语和多语种,但是没有为乌尔都语字幕生成工作做任何工作。我们的研究旨在通过利用乌尔都语专用序列建模技术开发一个以关注为基础的深层次学习模型来填补这一差距。我们用乌尔都语制作了一个数据集,翻译了包含700个“人”图像的“Flickr8k”数据集。我们评估了这个数据集上的拟议技术,并表明它可以在乌尔都语中达到0.83的BLEU分数。我们通过使用更好的CNN架构和优化技术改进了以前的状态。此外,我们还提供了关于如何将生成的字幕转换为正确的语法的讨论。