In decentralised autonomous systems it is the interactions between individual agents which govern the collective behaviours of the system. These local-level interactions are themselves often governed by an underlying network structure. These networks are particularly important for collective learning and decision-making whereby agents must gather evidence from their environment and propagate this information to other agents in the system. Models for collective behaviours may often rely upon the assumption of total connectivity between agents to provide effective information sharing within the system, but this assumption may be ill-advised. In this paper we investigate the impact that the underlying network has on performance in the context of collective learning. Through simulations we study small-world networks with varying levels of connectivity and randomness and conclude that totally-connected networks result in higher average error when compared to networks with less connectivity. Furthermore, we show that networks of high regularity outperform networks with increasing levels of random connectivity.


翻译:在分散的自治系统中,管理系统集体行为的是个别代理人之间的相互作用,这些地方一级的相互作用本身往往由一个基本的网络结构来管理,这些网络对于集体学习和决策特别重要,因为代理人必须从环境收集证据并将这种信息传播给系统内的其他代理人,集体行动模式可能往往依赖代理人之间完全连通的假设,以便在系统内进行有效的信息共享,但这一假设可能不明智。在本文件中,我们调查了基础网络对集体学习业绩的影响。我们通过模拟研究连接程度和随机性各不相同的小世界网络,得出的结论是,与连接较少的网络相比,完全连接的网络造成更高的平均错误。此外,我们表明,高常规性网络超越网络,而随机连接程度越来越高。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2021年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年8月16日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年6月30日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员