Bayesian Neural Networks (BNNs) provide a tool to estimate the uncertainty of a neural network by considering a distribution over weights and sampling different models for each input. In this paper, we propose a method for uncertainty estimation in neural networks which, instead of considering a distribution over weights, samples outputs of each layer from a corresponding Gaussian distribution, parametrized by the predictions of mean and variance sub-layers. In uncertainty quality estimation experiments, we show that the proposed method achieves better uncertainty quality than other single-bin Bayesian Model Averaging methods, such as Monte Carlo Dropout or Bayes By Backpropagation methods.
翻译:Bayesian神经网络(BNNs)提供了一种工具,通过考虑重量的分布和对每种输入的不同模型取样来估计神经网络的不确定性。在本文中,我们提出了一种神经网络不确定性估计方法,它不是考虑重量的分布,而是考虑高山相应分布的每个层的样本输出,以平均和差异次层的预测为准。在不确定性质量估计实验中,我们表明,拟议的方法比其他单宾贝耶斯模式的动态方法,如蒙特卡洛漏水或Bayes Bayes 反对位法,具有更好的不确定性质量。