Doubly intractable models are encountered in a number of fields, e.g. social networks, ecology and epidemiology. Inference for such models requires the evaluation of a likelihood function, whose normalising function depends on the model parameters and is typically computationally intractable. The normalising constant of the posterior distribution and the additional normalising function of the likelihood function result in a so-called doubly intractable posterior, for which it is difficult to directly apply Markov chain Monte Carlo (MCMC) methods. We propose a signed pseudo-marginal Metropolis-Hastings (PMMH) algorithm with an unbiased block-Poisson estimator to sample from the posterior distribution of doubly intractable models. As the estimator can be negative, the algorithm targets the absolute value of the estimated posterior and uses an importance sampling correction to ensure simulation consistent estimates of the posterior mean of any function. The advantages of our estimator over previous approaches are that its form is ideal for correlated pseudo-marginal methods which are well known to dramatically increase sampling efficiency. Moreover, we develop analytically derived heuristic guidelines for optimally tuning the hyperparameters of the estimator. We demonstrate the algorithm on the Ising model and a Kent distribution model for spherical data.


翻译:在许多领域,例如社交网络、生态学和流行病学领域,都遇到了难以解决的模式。这些模型的推论要求对概率函数进行评估,其正常化功能取决于模型参数,通常在计算上难以解决。后端分布的正常化常数和可能性函数的额外正常化功能导致所谓的加倍难处理的后端功能,因此很难直接应用Markov链 Monte Carlo(MCMC)方法。我们建议采用经签署的假边际大都会-哈斯廷(PMMH)算法,配有公正的块状波斯逊估测仪,用于从加倍棘手模型的后部分布中取样。此外,由于测算法可以是负的,因此算法针对估计后部分布的绝对值,并使用重要的取样校正,以确保对任何功能的后端平均值进行模拟一致的估计。我们的估测器比以往方法的优点是,其形式对于相关的伪边际测算法是理想的,人们熟知会大幅提高取样效率。此外,我们开发了高端模型的分析性测算模型和高空分配模型。我们为最佳地展示了高端数据模型。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月11日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员