Conventional inversion of the discrete Fourier transform (DFT) requires all DFT coefficients to be known. When the DFT coefficients of a rasterized image (represented as a matrix) are known only within a pass band, the original matrix cannot be uniquely recovered. In many cases of practical importance, the matrix is binary and its elements can be reduced to one of the two values, either 0 or 1. This is the case, for example, for the commonly used QR codes. The a priori information that the matrix is binary can compensate for the missing high-frequency DFT coefficients and restore uniqueness of image recovery. In this paper, we theoretically investigate the smallest band limit for which unique recovery of a generic binary matrix is still possible. The results depend on the dimensions of the matrix. Uniqueness results are proven for the dimensions $p \times q$, $p \times p$, and $p^\alpha\times p^\alpha$, where $p \neq q$ are prime numbers and $\alpha>1$ an integer. Inversion algorithms are proposed for uniquely recovering the matrix from its band-limited (blurred) version. The algorithms combine integer linear programming methods with lattice basis reduction techniques and significantly outperform naive implementations. The algorithm efficiently and reliably reconstructs severely blurred $29 \times 29$ binary matrices with only 121 out of the total of 841 DFT coefficients using only the binarity assumption and no other constraint on the image.
翻译:离散 Fourier 变异的常规变异( DFT) 需要知道所有 DFT 系数。 当光化图像( 以矩阵表示) 的 DFT 系数( 以矩阵形式表示) 只在传球带内才知道时, 原始矩阵无法单独恢复。 在许多具有实际重要性的情况下, 矩阵是二进制的, 其元素可以降为两个值之一, 可以是 0 或 1 。 例如, 常用的 QR 代码就是这种情况。 矩阵是二进制的先验信息, 可以弥补缺少的高频 DFT 系数, 并恢复图像恢复的独特性。 在本文中, 我们理论上调查最小的带限值限制, 通用二进制二进制矩阵仍然有可能得到独一的恢复。 异常结果被证明, $p q\ t p p p\ 和 alphatime p\ $ p\\ alpha$。 其中, $\ q qroq q 和 $\ palpha> 总计。 IMI 中, IMVal 和 breal II 等 的再分析方法被建议与 重新恢复的系统化。