This article explores the extension of well-known $\mathrm{F}_1$ score used for assessing the performance of binary classifiers. We propose the new metric using probabilistic interpretation of precision, recall, specificity, and negative predictive value. We describe its properties and compare it to common metrics. Then we demonstrate its behavior in edge cases of the confusion matrix. Finally, the properties of the metric are tested on binary classifier trained on the real dataset.
翻译:本文探讨用于评估二进制分类器性能的著名 $\ mathrm{F\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\D1\\\\\\\\用来评估二进制分类器性能的分数的延伸。 我们建议使用精确性、 回忆、 特性和负预测值的概率解释来进行新的衡量。 我们描述它的特性, 并将其与通用的值进行比较。 然后在混乱矩阵的边缘情况中展示它的行为。 最后, 测量值的特性在真实数据集培训的二进制分类器上测试 。