Metrics for merge trees that are simultaneously stable, informative, and efficiently computable have so far eluded researchers. We show in this work that it is possible to devise such a metric when restricting merge trees to ordered domains such as the interval and the circle. We present the ``dynamic ordered persistence editing'' (DOPE) distance, which we prove is stable and informative while satisfying metric properties. We then devise a simple $O(N^2)$ dynamic programming algorithm to compute it on the interval and an $O(N^3)$ algorithm to compute it on the circle. Surprisingly, we accomplish this by ignoring all of the hierarchical information of the merge tree and simply focusing on a sequence of ordered critical points, which can be interpreted as a time series. Thus our algorithm is more similar to string edit distance and dynamic time warping than it is to more conventional merge tree comparison algorithms. In the context of time series with the interval as a domain, we show empirically on the UCR time series classification dataset that DOPE performs better than bottleneck/Wasserstein distances between persistence diagrams.
翻译:合并树木同时稳定、 信息丰富、 高效计算的方法迄今都无法找到研究人员。 我们在此工作中显示, 当将合并树限制在间距和圆圈等有顺序的域时, 能够设计出这样的指标。 我们展示了“ 动态命令持久性编辑” (DOPE) 距离, 我们证明这种距离在满足度量属性的同时是稳定和丰富的。 然后我们设计了一个简单的$O (N%2) 动态编程算法, 用来计算它的间隔值和用于在圆圈上计算它的$O (N%3) 值算法 。 令人惊讶的是, 我们通过忽略合并树的所有等级信息, 并仅仅侧重于一个有顺序的临界点的序列, 它可以被解释为时间序列 。 因此, 我们的算法更类似于编辑距离和动态时间转换比更常规的合并树比较算法 。 在时间序列中, 将时间序列作为域, 我们从实验的角度显示, DOPE 的分类数据比 瓶塞/ 瓦瑟斯坦 距离 图表 还要好 。