Detecting anomalies in multivariate time series(MTS) data plays an important role in many domains. The abnormal values could indicate events, medical abnormalities,cyber-attacks, or faulty devices which if left undetected could lead to significant loss of resources, capital, or human lives. In this paper, we propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD). The BSSAD consists of two modules: the neural network module and the Bayesian state-space module. The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders in understanding the relationship between the data to achieve high accuracy in detecting anomalies. The modular design of our approach allows flexibility in implementation with the option of changing the parameters of the Bayesian state-space models or swap-ping neural network algorithms to achieve different levels of performance. In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters. We conducted extensive experiments on five different datasets. The experimental results show the superior performance of our model over baselines, achieving an F1-score greater than 0.95. In addition, we also propose using a metric called MatthewCorrelation Coefficient (MCC) to obtain more comprehensive information about the accuracy of anomaly detection.
翻译:在多变时间序列(MTS)数据中检测异常现象在许多领域起着重要作用。 异常值可以表明事件、 医学异常、 cyber- attack 或错误装置, 如果不加察觉, 可能导致资源、 资本或人命的重大损失。 在本文中, 我们提出一种创新和创新的方法来检测异常现象, 叫做巴伊西亚州- 空间异常探测( BSSAD ) 。 BSSAD 由两个模块组成: 神经网络模块和巴伊西亚州空间模块。 我们的方法设计结合了巴伊西亚州- 空间算法在预测下一个状态方面的力量, 以及经常性神经网络和自动摄像仪在了解数据之间的关系以在发现异常方面实现高度准确性方面的有效性。 我们的模块设计允许灵活实施, 选择改变巴伊斯州空间模型或交换神经网络算法的参数, 以达到不同程度的性能。 特别是, 我们注重使用贝斯州粒过滤器的州- 州- 模型和可感官卡尔曼过滤器的精确度算。 我们还进行了五大范围的实验, 使用更精确的模型, 展示了比我们更精确的实验性模型 。