Detecting anomalies in multivariate time series(MTS) data plays an important role in many domains. The abnormal values could indicate events, medical abnormalities,cyber-attacks, or faulty devices which if left undetected could lead to significant loss of resources, capital, or human lives. In this paper, we propose a novel and innovative approach to anomaly detection called Bayesian State-Space Anomaly Detection(BSSAD). The BSSAD consists of two modules: the neural network module and the Bayesian state-space module. The design of our approach combines the strength of Bayesian state-space algorithms in predicting the next state and the effectiveness of recurrent neural networks and autoencoders in understanding the relationship between the data to achieve high accuracy in detecting anomalies. The modular design of our approach allows flexibility in implementation with the option of changing the parameters of the Bayesian state-space models or swap-ping neural network algorithms to achieve different levels of performance. In particular, we focus on using Bayesian state-space models of particle filters and ensemble Kalman filters. We conducted extensive experiments on five different datasets. The experimental results show the superior performance of our model over baselines, achieving an F1-score greater than 0.95. In addition, we also propose using a metric called MatthewCorrelation Coefficient (MCC) to obtain more comprehensive information about the accuracy of anomaly detection.


翻译:在多变时间序列(MTS)数据中检测异常现象在许多领域起着重要作用。 异常值可以表明事件、 医学异常、 cyber- attack 或错误装置, 如果不加察觉, 可能导致资源、 资本或人命的重大损失。 在本文中, 我们提出一种创新和创新的方法来检测异常现象, 叫做巴伊西亚州- 空间异常探测( BSSAD ) 。 BSSAD 由两个模块组成: 神经网络模块和巴伊西亚州空间模块。 我们的方法设计结合了巴伊西亚州- 空间算法在预测下一个状态方面的力量, 以及经常性神经网络和自动摄像仪在了解数据之间的关系以在发现异常方面实现高度准确性方面的有效性。 我们的模块设计允许灵活实施, 选择改变巴伊斯州空间模型或交换神经网络算法的参数, 以达到不同程度的性能。 特别是, 我们注重使用贝斯州粒过滤器的州- 州- 模型和可感官卡尔曼过滤器的精确度算。 我们还进行了五大范围的实验, 使用更精确的模型, 展示了比我们更精确的实验性模型 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】工程和科学中的概率和统计,
专知会员服务
57+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员