GPT series models, such as GPT-3, CodeX, InstructGPT, ChatGPT, and so on, have gained considerable attention due to their exceptional natural language processing capabilities. However, despite the abundance of research on the difference in capabilities between GPT series models and fine-tuned models, there has been limited attention given to the evolution of GPT series models' capabilities over time. To conduct a comprehensive analysis of the capabilities of GPT series models, we select six representative models, comprising two GPT-3 series models (i.e., davinci and text-davinci-001) and four GPT-3.5 series models (i.e., code-davinci-002, text-davinci-002, text-davinci-003, and gpt-3.5-turbo). We evaluate their performance on nine natural language understanding (NLU) tasks using 21 datasets. In particular, we compare the performance and robustness of different models for each task under zero-shot and few-shot scenarios. Our extensive experiments reveal that the overall ability of GPT series models on NLU tasks does not increase gradually as the models evolve, especially with the introduction of the RLHF training strategy. While this strategy enhances the models' ability to generate human-like responses, it also compromises their ability to solve some tasks. Furthermore, our findings indicate that there is still room for improvement in areas such as model robustness.


翻译:GPT系列模型,例如GPT-3,CodeX,InstructGPT,ChatGPT等,因其出色的自然语言处理能力而备受关注。然而,尽管已经有大量研究比较了GPT系列模型和微调模型的能力差异,但是对于GPT系列模型的能力随时间演化的全面分析还有限。为了对GPT系列模型的能力进行全面分析,我们选择了代表性的6个模型,其中包括2个GPT-3系列模型(即davinci和text-davinci-001)和4个GPT-3.5系列模型(即code-davinci-002,text-davinci-002,text-davinci-003和gpt-3.5-turbo)。我们使用21个数据集评估它们在9个自然语言理解(NLU)任务上的表现。特别是,在零样本和少样本情况下比较不同模型在每个任务下的表现和鲁棒性。我们的广泛实验表明,GPT系列模型在NLU任务上的整体能力并不随着模型的演化逐渐增强,特别是随着RLHF训练策略的引入。而这种策略虽然增强了模型生成人类化响应的能力,但也损害了它们在某些任务上的解决能力。此外,我们的研究结果表明,在模型的稳健性等方面仍有改进的空间。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
「知识增强预训练语言模型」最新研究综述
专知会员服务
58+阅读 · 2022年11月18日
知识增强预训练语言模型:全面综述
专知会员服务
87+阅读 · 2021年10月19日
【GPT-3作者亲解】超大型语言模型少样本学习,109页ppt
专知会员服务
106+阅读 · 2020年12月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Survey of Large Language Models
Arxiv
335+阅读 · 2023年3月31日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关VIP内容
「知识增强预训练语言模型」最新研究综述
专知会员服务
58+阅读 · 2022年11月18日
知识增强预训练语言模型:全面综述
专知会员服务
87+阅读 · 2021年10月19日
【GPT-3作者亲解】超大型语言模型少样本学习,109页ppt
专知会员服务
106+阅读 · 2020年12月19日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员