We propose a new image denoising model based on a variable-growth total variation regularization of double-phase type with adaptive weight. It is designed to reduce staircasing with respect to the classical Rudin--Osher--Fatemi model, while preserving the edges of the image in a similar fashion. We implement the model and test its performance on synthetic and natural images in 1D and 2D over a range of noise levels.
翻译:暂无翻译