In this paper, we analyze the numerical approximation of the Navier-Stokes problem over a bounded polygonal domain in $\mathbb{R}^2$, where the initial condition is modeled by a log-normal random field. This problem usually arises in the area of uncertainty quantification. We aim to compute the expectation value of linear functionals of the solution to the Navier-Stokes equations and perform a rigorous error analysis for the problem. In particular, our method includes the finite element, fully-discrete discretizations, truncated Karhunen-Lo\'eve expansion for the realizations of the initial condition, and lattice-based quasi-Monte Carlo (QMC) method to estimate the expected values over the parameter space. Our QMC analysis is based on randomly-shifted lattice rules for the integration over the domain in high-dimensional space, which guarantees the error decays with $\mathcal{O}(N^{-1+\delta})$, where $N$ is the number of sampling points, $\delta>0$ is an arbitrary small number, and the constant in the decay estimate is independent of the dimension of integration.
翻译:在本文中, 我们分析了纳维- 斯托克斯 问题对一个捆绑多边形域的数值近似值 $\ mathbb{R ⁇ 2$, 最初条件由逻辑正常随机字段模拟。 这个问题通常出现在不确定性量化方面。 我们的目标是计算纳维- 斯托克斯 方程式解决方案的线性功能的预期值, 并对问题进行严格的错误分析。 特别是, 我们的方法包括有限元素、 完全分解的分解、 实现初始条件的快速Karhunen- Lo\' eve 扩展, 以及基于 lattice 的准Monte Carlo (QMC) 估算参数空间的预期值的方法。 我们的QMC 分析是基于高空间域整合随机调整的线性规则, 这保证了错误以$\ mathcal{ O} (N ⁇ -1 ⁇ delta}} $ 来衰减, $N$是初始的取样点数, $\delta> 0 是一个任意的估计。