We present intrinsic neural radiance fields, dubbed IntrinsicNeRF, that introduce intrinsic decomposition into the NeRF-based~\cite{mildenhall2020nerf} neural rendering method and can perform editable novel view synthesis in room-scale scenes while existing inverse rendering combined with neural rendering methods~\cite{zhang2021physg, zhang2022modeling} can only work on object-specific scenes. Given that intrinsic decomposition is a fundamentally ambiguous and under-constrained inverse problem, we propose a novel distance-aware point sampling and adaptive reflectance iterative clustering optimization method that enables IntrinsicNeRF with traditional intrinsic decomposition constraints to be trained in an unsupervised manner, resulting in temporally consistent intrinsic decomposition results. To cope with the problem of different adjacent instances of similar reflectance in a scene being incorrectly clustered together, we further propose a hierarchical clustering method with coarse-to-fine optimization to obtain a fast hierarchical indexing representation. It enables compelling real-time augmented reality applications such as scene recoloring, material editing, and illumination variation. Extensive experiments on Blender Object and Replica Scene demonstrate that we can obtain high-quality, consistent intrinsic decomposition results and high-fidelity novel view synthesis even for challenging sequences. Code and data are available on the project webpage: https://zju3dv.github.io/intrinsic_nerf/.
翻译:我们提出内在神经光亮场,称为IntrinsicNeRF, 将内在分解引入NeRF基的 ⁇ cite{mildenhall2020nerf}神经合成方法,并可以在室内场景中进行可编辑的新观点合成,而现有的反向转化方法与神经转化方法合在一起,Zhang2022建模,只能在特定对象的场景上工作。鉴于内在分解是一个根本上模糊和不完全的反向问题,我们提议采用新的远程点取样和适应反射迭代群集优化方法,使具有传统内在分解障碍的内分解障碍能够以不受监督的方式进行训练,从而产生时间上一致的内在分解结果。为了应对相邻的不同反射情况,在一个被错误组合的场景场中,我们进一步提议一种分级组合方法,以获得快速分级化的分级化合成代表制。它使得实时强化了现实应用,例如现场重新颜色、材料编辑、内部数据质量测试和内部数据序列,我们能够持续地进行高层次的变换。