Latent position models are widely used for the analysis of networks in a variety of research fields. In fact, these models possess a number of desirable theoretical properties, and are particularly easy to interpret. However, statistical methodologies to fit these models generally incur a computational cost which grows with the square of the number of nodes in the graph. This makes the analysis of large social networks impractical. In this paper, we propose a new method characterised by a much reduced computational complexity, which can be used to fit latent position models on networks of several tens of thousands nodes. Our approach relies on an approximation of the likelihood function, where the amount of noise introduced by the approximation can be arbitrarily reduced at the expense of computational efficiency. We establish several theoretical results that show how the likelihood error propagates to the invariant distribution of the Markov chain Monte Carlo sampler. In particular, we demonstrate that one can achieve a substantial reduction in computing time and still obtain a good estimate of the latent structure. Finally, we propose applications of our method to simulated networks and to a large coauthorships network, highlighting the usefulness of our approach.


翻译:长期定位模型被广泛用于分析各种研究领域的网络。事实上,这些模型具有一些可取的理论属性,特别容易解释。然而,适应这些模型的统计方法通常会产生计算成本,随着图中节点的平方数增长。这使得大型社交网络的分析不切实际。在本文中,我们提出了一个新的方法,该方法的特点是计算复杂性大大降低,可以用来在数万个节点的网络上配置潜伏定位模型。我们的方法依赖于对可能性功能的近似,即近似所引入的噪音数量可以任意减少而牺牲计算效率。我们建立了若干理论结果,表明这些可能的错误是如何扩散到马可夫链蒙特卡洛取样器的无常分布的。特别是,我们证明,一个人可以大量减少计算时间,并且仍然能够很好地估计潜伏的结构。最后,我们建议应用我们模拟网络和大型合作者网络的方法,突出我们的方法的效用。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
41+阅读 · 2020年12月18日
一份简单《图神经网络》教程,28页ppt
专知会员服务
120+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员