Bayesian inference in deep neural networks is challenging due to the high-dimensional, strongly multi-modal parameter posterior density landscape. Markov chain Monte Carlo approaches asymptotically recover the true posterior but are considered prohibitively expensive for large modern architectures. Local methods, which have emerged as a popular alternative, focus on specific parameter regions that can be approximated by functions with tractable integrals. While these often yield satisfactory empirical results, they fail, by definition, to account for the multi-modality of the parameter posterior. In this work, we argue that the dilemma between exact-but-unaffordable and cheap-but-inexact approaches can be mitigated by exploiting symmetries in the posterior landscape. Such symmetries, induced by neuron interchangeability and certain activation functions, manifest in different parameter values leading to the same functional output value. We show theoretically that the posterior predictive density in Bayesian neural networks can be restricted to a symmetry-free parameter reference set. By further deriving an upper bound on the number of Monte Carlo chains required to capture the functional diversity, we propose a straightforward approach for feasible Bayesian inference. Our experiments suggest that efficient sampling is indeed possible, opening up a promising path to accurate uncertainty quantification in deep learning.
翻译:深度神经网络中的贝叶斯推断由于高维、强多模式参数后验密度地形而具有挑战性。马尔科夫链蒙特卡罗方法可以渐进地恢复真实后验但对于大型现代架构而言被认为是难以承受的代价。局部方法作为一种常见的替代方案,专注于可以用具有可计算积分的函数来近似的特定参数区域。虽然这些方法通常能产生令人满意的实证结果,但是它们在定义上无法考虑参数后验的多模式性。在本文中,我们认为可以通过利用参数后验地形中的对称性来缓解精确但付不起和便宜但不精确之间的困境。该对称性由神经元交换和某些激活函数引起,在不同的参数值中导致相同的功能输出值。我们在理论上表明,贝叶斯神经网络中的后验预测密度可以限制在一个无对称性的参数参考集中。通过进一步推导出关于捕捉功能多样性所需的蒙特卡罗链数量的上界,我们提出了一个简单的可行的贝叶斯推断方法。我们的实验表明,有效的采样是可能的,为深度学习中准确的不确定性量化开辟了一个有前途的道路。