With yearly revenue exceeding one billion USD, Yahoo Gemini native advertising marketplace serves more than two billion impressions daily to hundreds of millions of unique users. One of the fastest growing segments of Gemini native is dynamic-product-ads (DPA), where major advertisers, such as Amazon and Walmart, provide catalogs with millions of products for the system to choose from and present to users. The subject of this work is finding and expanding the right audience for each DPA ad, which is one of the many challenges DPA presents. Approaches such as targeting various user groups, e.g., users who already visited the advertisers' websites (Retargeting), users that searched for certain products (Search-Prospecting), or users that reside in preferred locations (Location-Prospecting), have limited audience expansion capabilities. In this work we present two new approaches for audience expansion that also maintain predefined performance goals. The Conversion-Prospecting approach predicts DPA conversion rates based on Gemini native logged data, and calculates the expected cost-per-action (CPA) for determining users' eligibility to products and optimizing DPA bids in Gemini native auctions. To support new advertisers and products, the Trending-Prospecting approach matches trending products to users by learning their tendency towards products from advertisers' sites logged events. The tendency scores indicate the popularity of the product and the similarity of the user to those who have previously engaged with this product. The two new prospecting approaches were tested online, serving real Gemini native traffic, demonstrating impressive DPA delivery and DPA revenue lifts while maintaining most traffic within the acceptable CPA range (i.e., performance goal). After a successful testing phase, the proposed approaches are currently in production and serve all Gemini native traffic.


翻译:暂无翻译

0
下载
关闭预览

相关内容

2023年12 月 6 日,谷歌 CEO 桑达尔・皮查伊官宣 Gemini 1.0 版正式上线。这次发布的 Gemini 大模型是原生多模态大模型,是谷歌大模型新时代的第一步,它包括三种量级:能力最强的 Gemini Ultra,适用于多任务的 Gemini Pro 以及适用于特定任务和端侧的 Gemini Nano。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员