As artificial intelligence (AI) continues advancing, ensuring positive societal impacts becomes critical, especially as AI systems become increasingly ubiquitous in various aspects of life. However, developing "AI for good" poses substantial challenges around aligning systems with complex human values. Presently, we lack mature methods for addressing these challenges. This article presents and evaluates the Positive AI design method aimed at addressing this gap. The method provides a human-centered process to translate wellbeing aspirations into concrete practices. First, we explain the method's four key steps: contextualizing, operationalizing, optimizing, and implementing wellbeing supported by continuous measurement for feedback cycles. We then present a multiple case study where novice designers applied the method, revealing strengths and weaknesses related to efficacy and usability. Next, an expert evaluation study assessed the quality of the resulting concepts, rating them moderately high for feasibility, desirability, and plausibility of achieving intended wellbeing benefits. Together, these studies provide preliminary validation of the method's ability to improve AI design, while surfacing areas needing refinement like developing support for complex steps. Proposed adaptations such as examples and evaluation heuristics could address weaknesses. Further research should examine sustained application over multiple projects. This human-centered approach shows promise for realizing the vision of 'AI for Wellbeing' that does not just avoid harm, but actively benefits humanity.
翻译:暂无翻译