While radar and video data can be readily fused at the detection level, fusing them at the pixel level is potentially more beneficial. This is also more challenging in part due to the sparsity of radar, but also because automotive radar beams are much wider than a typical pixel combined with a large baseline between camera and radar, which results in poor association between radar pixels and color pixel. A consequence is that depth completion methods designed for LiDAR and video fare poorly for radar and video. Here we propose a radar-to-pixel association stage which learns a mapping from radar returns to pixels. This mapping also serves to densify radar returns. Using this as a first stage, followed by a more traditional depth completion method, we are able to achieve image-guided depth completion with radar and video. We demonstrate performance superior to camera and radar alone on the nuScenes dataset. Our source code is available at https://github.com/longyunf/rc-pda.


翻译:虽然雷达和视频数据可以在探测水平上很容易地结合,但将雷达和视频数据固定在像素水平上可能更有好处,这在部分程度上也更具挑战性,因为雷达的广度,但也因为汽车雷达束比典型的像素要宽得多,加上摄像头和雷达之间的大型基线,导致雷达像素和彩色像素之间联系差。结果之一是,为LIDAR设计的深度完成方法以及用于雷达和视频的视频票价差。我们在这里提议了一个雷达到像素联系阶段,从雷达返回到像素,学习雷达图解。这种绘图还有助于使雷达返回密度化。我们利用这一第一阶段,然后采用更传统的深度完成方法,能够用雷达和视频实现图像引导深度完成。我们展示了在核Scenes数据集上仅摄像和雷达的性优异性。我们的源代码可在https://github.com/longyunf/rc-pda上查阅。

1
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
还在修改博士论文?这份《博士论文写作技巧》为你指南
专知会员服务
109+阅读 · 2020年3月12日
近期必读的5篇 CVPR 2019【图卷积网络】相关论文和代码
专知会员服务
32+阅读 · 2020年1月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Real-time Scalable Dense Surfel Mapping
Arxiv
5+阅读 · 2019年9月10日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Two Stream 3D Semantic Scene Completion
Arxiv
4+阅读 · 2018年7月16日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
CVPR2020接收论文开源代码
专知
30+阅读 · 2020年2月29日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
Top
微信扫码咨询专知VIP会员