The Weisfeiler-Lehman (WL) test is a widely used algorithm in graph machine learning, including graph kernels, graph metrics, and graph neural networks. However, it focuses only on the consistency of the graph, which means that it is unable to detect slight structural differences. Consequently, this limits its ability to capture structural information, which also limits the performance of existing models that rely on the WL test. This limitation is particularly severe for traditional metrics defined by the WL test, which cannot precisely capture slight structural differences. In this paper, we propose a novel graph metric called the Wasserstein WL Subtree (WWLS) distance to address this problem. Our approach leverages the WL subtree as structural information for node neighborhoods and defines node metrics using the $L_1$-approximated tree edit distance ($L_1$-TED) between WL subtrees of nodes. Subsequently, we combine the Wasserstein distance and the $L_1$-TED to define the WWLS distance, which can capture slight structural differences that may be difficult to detect using conventional metrics. We demonstrate that the proposed WWLS distance outperforms baselines in both metric validation and graph classification experiments.


翻译:Weisfeiler-Lehman(WL)检验是图机器学习中广泛使用的算法,包括图内核、图度量和图神经网络。然而,它仅关注图的一致性,这意味着它无法检测轻微的结构差异。因此,这限制了它捕捉结构信息的能力,也限制了依赖WL测试的现有模型的性能。这种限制对于传统的由WL测试定义的度量尤其严重,它们无法精确捕捉轻微的结构差异。在本文中,我们提出了一种新的图度量方法,称为基于Wasserstein的Weisfeiler-Lehman子树(WWLS)距离,用于解决这个问题。我们的方法利用WL子树作为节点邻域的结构信息,使用节点WL子树之间的$L_1$近似树编辑距离($L_1$-TED)定义节点度量。随后,我们结合Wasserstein距离和$L_1$-TED定义WWLS距离,可以捕捉可能难以使用常规度量检测到的轻微结构差异。我们证明了所提出的WWLS距离在度量验证和图分类实验中优于基线。

0
下载
关闭预览

相关内容

【ICML2022】结构感知Transformer的图表示学习
专知会员服务
48+阅读 · 2022年6月17日
专知会员服务
50+阅读 · 2021年5月19日
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
专知会员服务
44+阅读 · 2020年9月3日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文带你浏览Graph Transformers
图与推荐
1+阅读 · 2022年7月14日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员