In most image retrieval systems, images include various high-level semantics, called tags or annotations. Virtually all the state-of-the-art image annotation methods that handle imbalanced labeling are search-based techniques which are time-consuming. In this paper, a novel coupled dictionary learning approach is proposed to learn a limited number of visual prototypes and their corresponding semantics simultaneously. This approach leads to a real-time image annotation procedure. Another contribution of this paper is that utilizes a marginalized loss function instead of the squared loss function that is inappropriate for image annotation with imbalanced labels. We have employed a marginalized loss function in our method to leverage a simple and effective method of prototype updating. Meanwhile, we have introduced ${\ell}_1$ regularization on semantic prototypes to preserve the sparse and imbalanced nature of labels in learned semantic prototypes. Finally, comprehensive experimental results on various datasets demonstrate the efficiency of the proposed method for image annotation tasks in terms of accuracy and time. The reference implementation is publicly available on https://github.com/hamid-amiri/MCDL-Image-Annotation.


翻译:在大多数图像检索系统中,图像包含多种高层语义,称为标签或注释。目前几乎所有处理不平衡标签的最先进图像注释方法都是基于搜索的技术,耗时较长。本文提出了一种新颖的耦合字典学习方法,可以同时学习有限数量的视觉原型及其相应的语义,从而实现实时图像注释。本文的另一个贡献是使用边缘损失函数代替对于不平衡标签的图像注释而言不适用于的平方损失函数。本方法中采用了边缘化损失函数以利用一种简单有效的原型更新方法。同时,我们在语义原型上引入了${\ell}_1$正则化,以保持学习到的语义原型稀疏和不平衡的特性。最后,通过在各种数据集上进行全面的实验结果,证明了所提出的方法在准确度和时间方面对图像注释任务的高效性。参考实现已经公开在https://github.com/hamid-amiri/MCDL-Image-Annotation。

0
下载
关闭预览

相关内容

【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2019年3月16日
VIP会员
相关VIP内容
【NeurIPS2021】基于关联与识别的少样本目标检测
专知会员服务
21+阅读 · 2021年11月29日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员