Neuroevolution (NE) has recently proven a competitive alternative to learning by gradient descent in reinforcement learning tasks. However, the majority of NE methods and associated simulation environments differ crucially from biological evolution: the environment is reset to initial conditions at the end of each generation, whereas natural environments are continuously modified by their inhabitants; agents reproduce based on their ability to maximize rewards within a population, while biological organisms reproduce and die based on internal physiological variables that depend on their resource consumption; simulation environments are primarily single-agent while the biological world is inherently multi-agent and evolves alongside the population. In this work we present a method for continuously evolving adaptive agents without any environment or population reset. The environment is a large grid world with complex spatiotemporal resource generation, containing many agents that are each controlled by an evolvable recurrent neural network and locally reproduce based on their internal physiology. The entire system is implemented in JAX, allowing very fast simulation on a GPU. We show that NE can operate in an ecologically-valid non-episodic multi-agent setting, finding sustainable collective foraging strategies in the presence of a complex interplay between ecological and evolutionary dynamics.


翻译:神经革命(NE)最近证明,在强化学习任务中,作为梯度下降学习的一种有竞争力的替代方法,最近被证明是代替梯度下降学习的竞争性替代方法,然而,大部分NE方法和相关的模拟环境与生物演变截然不同:环境在每代人末端被重新设置为初始条件,而自然环境则不断被其居民改变;物剂根据其在人口内部获得最大收益的能力而繁殖,而生物有机体根据取决于其资源消耗的内部生理变量而繁殖和死亡;模拟环境主要是单一试剂,而生物世界本身是多剂,与人口一起演变。在这项工作中,我们提出了一个在没有任何环境或人口重新设置的情况下不断发展适应剂的方法。环境是一个庞大的电网世界,它拥有复杂的波时速资源生成,其中有许多物剂都由可变的经常性神经网络控制,并且根据内部生理学在当地繁殖。整个系统在JAX实施,允许对GPU进行非常快速的模拟。我们表明,NE可以在一个生态价值的非先导型多试剂环境下运作,在生态和进动态之间复杂的相互作用中找到可持续的集体战略。</s>

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
15+阅读 · 2022年6月14日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员