项目名称: 基于改进的Co-Kriging模型的高维气动优化设计新方法研究

项目编号: No.11272265

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 韩忠华

作者单位: 西北工业大学

项目金额: 80万元

中文摘要: 基于Kriging代理模型的优化方法是一种有望大大提高航空航天领域复杂设计问题效率的新方法,被称为区别于传统的梯度优化与非梯度优化的第三类优化算法。但是,该方法目前适用于直到10维左右的优化问题;对于基于高可信度CFD的高维气动优化设计问题(100维左右),该方法面临CFD分析次数过多、计算量过大的困难。高维问题成为限制其进一步应用的"瓶颈"。本项目基于一种改进的co-Kriging模型,通过在优化过程中同时引入adjoint梯度求解和低可信度CFD分析,从而提出一种适用于高维优化问题的全局优化框架,并发展出相应的统计学寻优机制和约束处理方法。通过发展基于co-Kriging模型的新的优化理论和算法,有望解决代理模型优化方法在高维优化问题方面面临的困难,为飞行器气动优化设计及其它学科相关研究提供一种比传统的代理模型优化更有效的方法。

中文关键词: 优化设计;代理优化;Kriging模型;代理模型;气动优化

英文摘要: Surrogate-based optimization via Kriging model is a new methodology which can be used to greatly improve the design efficiency of complex optimization problems in aerospace applications. It has been classified as the third type of optimization algorithm, other than the conventional gradient-based and gradient-free numerical optimization algorithms. However, this method, up to now, is typically limited to the applications with the number of design variables being about 10. For the higher -dimensional aerodynamic design optimization problems (typically about 100) based on high-fidelity computation fluid dynamics (CFD), this method is suffering from the limitations of requiring extremly large number of CFD analysis, thus prohibitive computational cost. The "size of the problem", or the so-called "curse of dimensionality" has become a "bottleneck" before it is further extended to the real-world applications. This project aims to develop the new concept of a variable-fidelity, global optimization framework which is supposed to be able to breakthrough the "bottleneck" of the surrogate-based optimization for higher-dimensional problems. The basic idea is to use an improved co-Kriging surrogate modeling which simultaneously incorporates gradient solution by Adjoint method and the solution by lower-fidelity CFD analysis

英文关键词: Design Optimizaiton;Surrogate-based optimzation;Kriging model;surrogate model;aerodynamic shape optimization

成为VIP会员查看完整内容
0

相关内容

轻量化神经网络卷积设计研究进展
专知会员服务
56+阅读 · 2021年10月24日
专知会员服务
13+阅读 · 2021年10月12日
专知会员服务
13+阅读 · 2021年8月8日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
63+阅读 · 2021年4月22日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
43+阅读 · 2021年1月31日
专知会员服务
85+阅读 · 2020年12月11日
专知会员服务
74+阅读 · 2020年12月7日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
29+阅读 · 2020年10月11日
[ICML-Google]先宽后窄:对深度薄网络的有效训练
专知会员服务
36+阅读 · 2020年7月5日
WWW2022 | 基于交叉成对排序的无偏推荐算法
机器学习与推荐算法
0+阅读 · 2022年4月20日
CUDA 并行计算优化策略总结
极市平台
2+阅读 · 2021年12月27日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
机器学习中的最优化算法总结
人工智能前沿讲习班
22+阅读 · 2019年3月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月1日
Arxiv
0+阅读 · 2022年5月1日
Arxiv
0+阅读 · 2022年4月29日
小贴士
相关VIP内容
轻量化神经网络卷积设计研究进展
专知会员服务
56+阅读 · 2021年10月24日
专知会员服务
13+阅读 · 2021年10月12日
专知会员服务
13+阅读 · 2021年8月8日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
63+阅读 · 2021年4月22日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
43+阅读 · 2021年1月31日
专知会员服务
85+阅读 · 2020年12月11日
专知会员服务
74+阅读 · 2020年12月7日
【NeurIPS2020-北大】非凸优化裁剪算法的改进分析
专知会员服务
29+阅读 · 2020年10月11日
[ICML-Google]先宽后窄:对深度薄网络的有效训练
专知会员服务
36+阅读 · 2020年7月5日
相关资讯
WWW2022 | 基于交叉成对排序的无偏推荐算法
机器学习与推荐算法
0+阅读 · 2022年4月20日
CUDA 并行计算优化策略总结
极市平台
2+阅读 · 2021年12月27日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
机器学习中的最优化算法总结
人工智能前沿讲习班
22+阅读 · 2019年3月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员