In this paper, we study Stochastic Control Barrier Functions (SCBFs) to enable the design of probabilistic safe real-time controllers in presence of uncertainties and based on noisy measurements. Our goal is to design controllers that bound the probability of a system failure in finite-time to a given desired value. To that end, we first estimate the system states from the noisy measurements using an Extended Kalman filter, and compute confidence intervals on the filtering errors. Then, we account for filtering errors and derive sufficient conditions on the control input based on the estimated states to bound the probability that the real states of the system enter an unsafe region within a finite time interval. We show that these sufficient conditions are linear constraints on the control input, and, hence, they can be used in tractable optimization problems to achieve safety, in addition to other properties like reachability, and stability. Our approach is evaluated using a simulation of a lane-changing scenario on a highway with dense traffic.
翻译:在本文中,我们研究斯托克控制屏障功能(SCBFs),以便能够在不确定因素和噪音测量的基础上设计出概率安全的实时实时控制器。我们的目标是设计控制器,将系统在有限时间内发生故障的概率绑到一个特定的理想值。为此,我们首先用扩展的卡尔曼过滤器从噪音测量中估算出该系统的位置,并计算过滤错误上的信任间隔。然后,我们算出过滤错误,并根据估计的状态从控制输入中获取足够的条件,以约束系统实际状态在有限的时间间隔内进入不安全区域的可能性。我们表明,这些充分的条件是控制输入的线性限制,因此,除了其他可达性和稳定性等特性之外,这些控制器可以用于可拉动的优化问题。我们的方法是通过模拟在交通密度稠密的高速公路上改变车道的情景来进行评估的。