We investigate Markovian queues that are examined by a controller at random times determined by a Poisson process. Upon examination, the controller sets the service speed to be equal to the minimum of the current number of customers in the queue and a certain maximum service speed; this service speed prevails until the next examination time. We study the resulting two-dimensional Markov process of queue length and server speed, in particular two regimes with time scale separation, specifically for infinitely frequent and infinitely long examination times. In the intermediate regime the analysis proves to be extremely challenging. To gain further insight into the model dynamics we then analyse two variants of the model in which the controller is just an observer and does not change the speed of the server.
翻译:我们研究了由控制器在随机时间进行检查的马尔可夫队列,这个时间由泊松过程确定。在检查时,控制器将服务速度设置为当前队列中的顾客数量和特定最大服务速度的最小值;此服务速度将一直持续到下一个检查时间。我们研究了队列长度和服务器速度的两维马尔可夫过程,特别是在时间尺度分离的两种情况下,也就是说,无限频繁和无限长的检查时间。在中间阶段,分析证明非常具有挑战性。为了进一步了解模型的动态特性,我们分析了模型的两个变种,在这些变种中,控制器仅起到观察者的作用,不改变服务器的速度。