This paper investigates the role of quadrature exactness in the approximation scheme of hyperinterpolation. Constructing a hyperinterpolant of degree $n$ requires a positive-weight quadrature rule with exactness degree $2n$. We examine the behavior of such approximation when the required exactness degree $2n$ is relaxed to $n+k$ with $0<k\leq n$. Aided by the Marcinkiewicz--Zygmund inequality, we affirm that the $L^2$ norm of the exactness-relaxing hyperinterpolation operator is bounded by a constant independent of $n$, and this approximation scheme is convergent as $n\rightarrow\infty$ if $k$ is positively correlated to $n$. Thus, the family of candidate quadrature rules for constructing hyperinterpolants can be significantly enriched, and the number of quadrature points can be considerably reduced. As a potential cost, this relaxation may slow the convergence rate of hyperinterpolation in terms of the reduced degrees of quadrature exactness. Our theoretical results are asserted by numerical experiments on three of the best-known quadrature rules: the Gauss quadrature, the Clenshaw--Curtis quadrature, and the spherical $t$-designs.
翻译:本文调查了二次曲线精确度在超内推法近似机制中所起的作用。 构建一个高度的超度间推 $n 要求有一个正重量的二次曲线规则, 准确度为$2n美元。 当要求的精确度为$2n美元, 放松为$+k美元, 放松为$0<k\leqn美元时, 我们检查这种近似行为。 由Marcinkiewicz- Zygmund 的不平等所帮助, 我们确认, 精确度放松的超间推法操作员标准 $2, 受一个以美元为独立的恒定标准的约束, 而如果美元与美元成正比, 则该近似法则以$n\rightrow\ infty $为正比值。 因此, 建造超内插剂的候选二次曲线规则的组合可以大大地丰富, 并且四方位点的数量可以大大降低。 作为潜在成本, 这种放松可能减缓超度的超间推合率速度, 。 我们的理论结果由三个已知的区划法规则所断言: 。