In decentralized optimization, nodes of a communication network each possess a local objective function, and communicate using gossip-based methods in order to minimize the average of these per-node functions. While synchronous algorithms are heavily impacted by a few slow nodes or edges in the graph (the \emph{straggler problem}), their asynchronous counterparts are notoriously harder to parametrize. Indeed, their convergence properties for networks with heterogeneous communication and computation delays have defied analysis so far. In this paper, we use a \emph{ continuized} framework to analyze asynchronous algorithms in networks with delays. Our approach yields a precise characterization of convergence time and of its dependency on heterogeneous delays in the network. Our continuized framework benefits from the best of both continuous and discrete worlds: the algorithms it applies to are based on event-driven updates. They are thus essentially discrete and hence readily implementable. Yet their analysis is essentially in continuous time, relying in part on the theory of delayed ODEs. Our algorithms moreover achieve an \emph{asynchronous speedup}: their rate of convergence is controlled by the eigengap of the network graph weighted by local delays, instead of the network-wide worst-case delay as in previous analyses. Our methods thus enjoy improved robustness to stragglers.


翻译:在优化方面,通信网络的节点各自都具有本地客观功能,并且使用八卦为基础的方法进行沟通,以最大限度地减少这些每个节点功能的平均值。虽然同步算法受到图形中几个缓慢节点或边缘(memph{stragler proble)的严重影响,但其无节点的对等方则明显更难进行对称。事实上,它们对于通信和计算延误不一的网络的趋同特性迄今无法进行分析。在本文中,我们使用一个基于八卦的计算法框架来分析网络中的非同步算法,以延缓的方式分析。我们的方法对趋同时间及其对于网络中各异性延迟的依赖性作了精确的描述。我们的同步算法对连续和离散世界的最佳组合框架有利:它应用的算法是以事件驱动的最新数据为基础。因此,它们基本上离散,因此很容易执行。但是它们的分析基本上是连续的,部分依靠延迟的计算理论。我们的算法还实现了网络最强的同步性。我们的算法还实现了网络最强的趋同性,因此,通过之前的网络的超速率率实现了网络的同步分析。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年10月16日
Arxiv
0+阅读 · 2022年10月16日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员