We study a very restrictive graph exploration problem. In our model, an agent without persistent memory is placed on a vertex of a graph and only sees the adjacent vertices. The goal is to visit every vertex of the graph, return to the start vertex, and terminate. The agent does not know through which edge it entered a vertex. The agent may color the current vertex and can see the colors of the neighboring vertices in an arbitrary order. The agent may not recolor a vertex. We investigate the number of colors necessary and sufficient to explore all graphs. We prove that n-1 colors are necessary and sufficient for exploration in general, 3 colors are necessary and sufficient if only trees are to be explored, and min(2k-3,n-1) colors are necessary and min(2k-1,n-1) colors are sufficient on graphs of size n and circumference $k$, where the circumference is the length of a longest cycle. This only holds if an algorithm has to explore all graphs and not merely certain graph classes. We give an example for a graph class where each graph can be explored with 4 colors, although the graphs have maximal circumference. Moreover, we prove that recoloring vertices is very powerful by designing an algorithm with recoloring that uses only 7 colors and explores all graphs.
翻译:我们研究一个非常限制性的图形勘探问题。 在我们的模型中, 一个没有持续内存的代理人被放置在图形的顶端上, 并且只看到相邻的顶端。 目标是访问图形的每个顶端, 返回开始的顶端, 并终止。 代理人不知道它进入顶端。 代理人可能在当前顶端上进行着色, 并且可以任意地看到相邻的顶端的颜色。 代理人可能不会重新颜色一个顶端。 我们调查的是所有图表所需的和足够的颜色数量。 我们证明, n-1 颜色对于一般的勘探来说是必要和足够的, 3种颜色是必要和足够的, 如果只对树进行勘探, 并且 min( 2k-3, n-1) 颜色是必要的, 而 min( 2k, 1, n-1) 颜色是足够的。 代理人可以任意地将当前顶端的顶端的顶端和四周的顶端的顶端的顶端颜色显示为最长的周期。 只有当一个算法必须探索所有图表, 而不是某些图形类。 我们举一个图表类的例子, 每个图表类的图形类, 每个图表都是必要的, 需要用最强大的颜色来探索, 。