We study a very restrictive graph exploration problem. In our model, an agent without persistent memory is placed on a vertex of a graph and only sees the adjacent vertices. The goal is to visit every vertex of the graph, return to the start vertex, and terminate. The agent does not know through which edge it entered a vertex. The agent may color the current vertex and can see the colors of the neighboring vertices in an arbitrary order. The agent may not recolor a vertex. We investigate the number of colors necessary and sufficient to explore all graphs. We prove that n-1 colors are necessary and sufficient for exploration in general, 3 colors are necessary and sufficient if only trees are to be explored, and min(2k-3,n-1) colors are necessary and min(2k-1,n-1) colors are sufficient on graphs of size n and circumference $k$, where the circumference is the length of a longest cycle. This only holds if an algorithm has to explore all graphs and not merely certain graph classes. We give an example for a graph class where each graph can be explored with 4 colors, although the graphs have maximal circumference. Moreover, we prove that recoloring vertices is very powerful by designing an algorithm with recoloring that uses only 7 colors and explores all graphs.


翻译:我们研究一个非常限制性的图形勘探问题。 在我们的模型中, 一个没有持续内存的代理人被放置在图形的顶端上, 并且只看到相邻的顶端。 目标是访问图形的每个顶端, 返回开始的顶端, 并终止。 代理人不知道它进入顶端。 代理人可能在当前顶端上进行着色, 并且可以任意地看到相邻的顶端的颜色。 代理人可能不会重新颜色一个顶端。 我们调查的是所有图表所需的和足够的颜色数量。 我们证明, n-1 颜色对于一般的勘探来说是必要和足够的, 3种颜色是必要和足够的, 如果只对树进行勘探, 并且 min( 2k-3, n-1) 颜色是必要的, 而 min( 2k, 1, n-1) 颜色是足够的。 代理人可以任意地将当前顶端的顶端的顶端和四周的顶端的顶端的顶端颜色显示为最长的周期。 只有当一个算法必须探索所有图表, 而不是某些图形类。 我们举一个图表类的例子, 每个图表类的图形类, 每个图表都是必要的, 需要用最强大的颜色来探索, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员