Spatial-Temporal Video Super-Resolution (ST-VSR) aims to generate super-resolved videos with higher resolution(HR) and higher frame rate (HFR). Quite intuitively, pioneering two-stage based methods complete ST-VSR by directly combining two sub-tasks: Spatial Video Super-Resolution (S-VSR) and Temporal Video Super-Resolution(T-VSR) but ignore the reciprocal relations among them. Specifically, 1) T-VSR to S-VSR: temporal correlations help accurate spatial detail representation with more clues; 2) S-VSR to T-VSR: abundant spatial information contributes to the refinement of temporal prediction. To this end, we propose a one-stage based Cycle-projected Mutual learning network (CycMu-Net) for ST-VSR, which makes full use of spatial-temporal correlations via the mutual learning between S-VSR and T-VSR. Specifically, we propose to exploit the mutual information among them via iterative up-and-down projections, where the spatial and temporal features are fully fused and distilled, helping the high-quality video reconstruction. Besides extensive experiments on benchmark datasets, we also compare our proposed CycMu-Net with S-VSR and T-VSR tasks, demonstrating that our method significantly outperforms state-of-the-art methods.
翻译:空间-时空视频超级分辨率(ST-VSR)旨在生成超解的视频,其分辨率较高,框架率较高。 相当直观、开拓性的两阶段方法通过直接结合两个子任务(空间视频超级分辨率(S-VSR)和时空视频超级分辨率(T-VSR)),完成ST-VSR。但忽视了它们之间的对等关系。具体地说,1 T-VSR至S-VSR:时间相关性有助于准确的空间细节代表和更多线索;2 S-VSR至T-VSR:丰富的空间信息有助于改进时间预测。为此,我们提议为ST-VSR建立一个基于一个阶段的周期预测相互学习网络(Cycmu-Net),通过S-VSR和T-VSR之间的相互学习,充分利用空间-时空相关性。具体地说,我们提议通过反复的上下预测来利用它们之间的相互信息,其中空间和时空特征特征特征特征完全结合和分解时间特征信息有助于改进时间预测。 为此,我们提议一个阶段基于周期预测的相互学习的相互学习网络的相互学习网络模型,同时进行我们拟议的高质量的S-SR 重建。