Spatial-Temporal Video Super-Resolution (ST-VSR) aims to generate super-resolved videos with higher resolution(HR) and higher frame rate (HFR). Quite intuitively, pioneering two-stage based methods complete ST-VSR by directly combining two sub-tasks: Spatial Video Super-Resolution (S-VSR) and Temporal Video Super-Resolution(T-VSR) but ignore the reciprocal relations among them. Specifically, 1) T-VSR to S-VSR: temporal correlations help accurate spatial detail representation with more clues; 2) S-VSR to T-VSR: abundant spatial information contributes to the refinement of temporal prediction. To this end, we propose a one-stage based Cycle-projected Mutual learning network (CycMu-Net) for ST-VSR, which makes full use of spatial-temporal correlations via the mutual learning between S-VSR and T-VSR. Specifically, we propose to exploit the mutual information among them via iterative up-and-down projections, where the spatial and temporal features are fully fused and distilled, helping the high-quality video reconstruction. Besides extensive experiments on benchmark datasets, we also compare our proposed CycMu-Net with S-VSR and T-VSR tasks, demonstrating that our method significantly outperforms state-of-the-art methods.


翻译:空间-时空视频超级分辨率(ST-VSR)旨在生成超解的视频,其分辨率较高,框架率较高。 相当直观、开拓性的两阶段方法通过直接结合两个子任务(空间视频超级分辨率(S-VSR)和时空视频超级分辨率(T-VSR)),完成ST-VSR。但忽视了它们之间的对等关系。具体地说,1 T-VSR至S-VSR:时间相关性有助于准确的空间细节代表和更多线索;2 S-VSR至T-VSR:丰富的空间信息有助于改进时间预测。为此,我们提议为ST-VSR建立一个基于一个阶段的周期预测相互学习网络(Cycmu-Net),通过S-VSR和T-VSR之间的相互学习,充分利用空间-时空相关性。具体地说,我们提议通过反复的上下预测来利用它们之间的相互信息,其中空间和时空特征特征特征特征完全结合和分解时间特征信息有助于改进时间预测。 为此,我们提议一个阶段基于周期预测的相互学习的相互学习网络的相互学习网络模型,同时进行我们拟议的高质量的S-SR 重建。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员