We introduce global-local shrinkage priors into a Bayesian dynamic linear model to adaptively estimate both changepoints and local outliers in a novel model we call Adaptive Bayesian Changepoints with Outliers (ABCO). We utilize a state-space approach to identify a dynamic signal in the presence of outliers and measurement error with stochastic volatility. We find that global state equation parameters are inadequate for most real applications and we include local parameters to track noise at each time-step. This setup provides a flexible framework to detect unspecified changepoints in complex series, such as those with large interruptions in local trends, with robustness to outliers and heteroskedastic noise. ABCO may also be used as a robust Bayesian trend filter that can reconstruct interrupted time series. We detail the extension of our approach to time-varying parameter estimation within dynamic regression analysis to identify structural breaks. Finally, we compare our algorithm against several alternatives to demonstrate its efficacy in diverse simulation scenarios and three empirical examples.
翻译:我们将全球-局部缩缩前置引入贝叶西亚动态线性模型,以适应性地估计变化点和局部外向值,我们称之为新模型,我们称之为“有外向值的适应性贝叶斯变化点”。我们使用州-空间方法,在外向值和测量误差存在时发现动态信号,我们发现全球状态方程参数对于大多数真实应用来说是不够的,我们包括了跟踪每个时间步骤的噪音的本地参数。这一设置提供了一个灵活的框架,用以检测复杂系列的未指明的变化点,例如局部趋势大为中断的变点,对外向值和热心噪声的变点等。我们还可以将巴伊斯趋势过滤器用作一个强大的波亚趋势过滤器,以重建中断的时间序列。我们详细介绍了我们在动态回归分析中进行时间变化参数估计的延伸,以找出结构断裂。最后,我们比较了我们的算法与若干替代方法,以显示其在不同模拟假设中的效果和三个经验实例。