This paper presents a statistical analysis of structural changes in the Central England temperature series, one of the longest surface temperature records available. A changepoint analysis is performed to detect abrupt changes, which can be regarded as a preliminary step before further analysis is conducted to identify the causes of the changes (e.g., artificial, human-induced or natural variability). Regression models with structural breaks, including mean and trend shifts, are fitted to the series and compared via two commonly used multiple changepoint penalized likelihood criteria that balance model fit quality (as measured by likelihood) against parsimony considerations. Our changepoint model fits, with independent and short-memory errors, are also compared with a different class of models termed long-memory models that have been previously used by other authors to describe persistence features in temperature series. In the end, the optimal model is judged to be one containing a changepoint in the late 1980s, with a transition to an intensified warming regime. This timing and warming conclusion is consistent across changepoint models compared in this analysis. The variability of the series is not found to be significantly changing, and shift features are judged to be more plausible than either short- or long-memory autocorrelations. The final proposed model is one including trend-shifts (both intercept and slope parameters) with independent errors. The analysis serves as a walk-through tutorial of different changepoint techniques, illustrating what can be statistically inferred.


翻译:本文介绍了对中英格兰温度系列结构变化的统计分析,这是现有地表温度记录中最长的表层温度记录之一。为了检测突变的变化,对中英格兰温度系列的结构变化进行了变化点分析,在进一步分析确定变化的原因(例如人为变化、人为变化或自然变化)之前,可将这种变化视为初步步骤; 将结构间断(包括中值和趋势变化)的回归模型与该系列相匹配,并通过两个常用的多变点比较,使模型质量(按概率衡量)与偏差因素相匹配的可能性标准受到抑制。 我们的变点模型与独立和短镜头错误相匹配,也与其他作者以前用来描述温度序列中持久性特征的不同模型类长期模拟模型相比较。最后,认为最佳模型包含1980年代后期的变更点,包括向强化变暖制度过渡。这一时间和变暖结论与本次分析中的变化点模型是一致的。发现,该序列的变异性没有显著的变化,而且变异特征被认为比短期或短暂的模拟模型更可信,包括长期的推导式模型作为最后的推算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月2日
Arxiv
0+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员