This paper studies a new and highly efficient Markov chain Monte Carlo (MCMC) methodology to perform Bayesian inference in low-photon imaging problems, with particular attention to situations involving observation noise processes that deviate significantly from Gaussian noise, such as binomial, geometric and low-intensity Poisson noise. These problems are challenging for many reasons. From an inferential viewpoint, low-photon numbers lead to severe identifiability issues, poor stability and high uncertainty about the solution. Moreover, low-photon models often exhibit poor regularity properties that make efficient Bayesian computation difficult; e.g., hard non-negativity constraints, non-smooth priors, and log-likelihood terms with exploding gradients. More precisely, the lack of suitable regularity properties hinders the use of state-of-the-art Monte Carlo methods based on numerical approximations of the Langevin stochastic differential equation (SDE), as both the SDE and its numerical approximations behave poorly. We address this difficulty by proposing an MCMC methodology based on a reflected and regularised Langevin SDE, which is shown to be well-posed and exponentially ergodic under mild and easily verifiable conditions. This then allows us to derive four reflected proximal Langevin MCMC algorithms to perform Bayesian computation in low-photon imaging problems. The proposed approach is demonstrated with a range of experiments related to image deblurring, denoising, and inpainting under binomial, geometric and Poisson noise.


翻译:本文研究一种高效的新马可夫链Monte Carlo(MCMC)方法,对低磷成像问题进行巴伊西亚测算,尤其关注与高斯噪音有显著差异的观测噪音过程,例如二氧化、几何和低密度Poisson噪音。由于多种原因,这些问题具有挑战性。从推断观点看,低粒子数量会导致严重的可辨识问题、不稳定和解决方案的高度不确定性。此外,低粒子模型往往显示常规性特征差,使得高效贝伊西亚计算困难;例如,硬非惯性非惯性限制、非显性前科和与爆炸梯度相异的日志学条件。更确切地说,缺乏适当的常规性特征妨碍了使用基于兰埃文分量差方数值近的蒙特卡洛(SDE)状态方法,因为SDE及其数值比值的近似性差性表现不善。我们通过基于反映和可核实的低度市价计算方法提出MC模型方法来解决这一困难。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员