Guiding robots can not only detect close-range obstacles like other guiding tools, but also extend its range to perceive the environment when making decisions. However, most existing works over-simplified the interaction between human agents and robots, ignoring the differences between individuals, resulting in poor experiences for different users. To solve the problem, we propose a data-driven guiding system to cope with the effect brighten by individual differences. In our guiding system, we design a Human Motion Predictor (HMP) and a Robot Dynamics Model (RDM) based on deep neural network, the time convolutional network (TCN) is verified to have the best performance, to predict differences in interaction between different human agents and robots. To train our models, we collected datasets that records the interactions from different human agents. Moreover, given the predictive information of the specific user, we propose a waypoints selector that allows the robot to naturally adapt to the user's state changes, which are mainly reflected in the walking speed. We compare the performance of our models with previous works and achieve significant performance improvements. On this basis, our guiding system demonstrated good adaptability to different human agents. Our guiding system is deployed on a real quadruped robot to verify the practicability.


翻译:引导机器人不仅可以像其他引导工具一样检测近距离障碍,还可以扩展其感知环境的范围进行决策。然而,大多数现有的研究过于简化了人与机器人之间的交互,忽视了个人之间的差异,导致不同用户的体验较差。为了解决这个问题,我们提出了一种数据驱动的引导系统,以应对由个体差异带来的光亮效应。在我们的引导系统中,我们设计了一个基于深度神经网络的人体运动预测器(HMP)和机器人动力学模型(RDM),时间卷积网络(TCN)被证明具有最佳性能,以预测不同人类代理和机器人之间的交互差异。为了训练我们的模型,我们收集了不同人类代理的交互记录数据集。此外,我们提出了一种航点选择器,可以根据特定用户的预测信息,自然地适应用户的状态变化,主要体现在行走速度上。我们将我们模型的性能与以前的工作进行了比较,并取得了显着的性能提升。在此基础上,我们的引导系统展示了良好的适应性,适用于不同的人类代理。我们的引导系统部署在一个真实的四足机器人上进行验证。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】基于图神经网络的情景识别
泡泡机器人SLAM
11+阅读 · 2018年11月21日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员