String diagrams are a powerful and intuitive graphical syntax, originated in the study of symmetric monoidal categories. In the last few years, they have found application in the modelling of various computational structures, in fields as diverse as Computer Science, Physics, Control Theory, Linguistics, and Biology. In many such proposals, the transformations of the described systems are modelled as rewrite rules of diagrams. These developments demand a mathematical foundation for string diagram rewriting: whereas rewrite theory for terms is well-understood, the two-dimensional nature of string diagrams poses additional challenges. This work systematises and expands a series of recent conference papers laying down such foundation. As first step, we focus on the case of rewrite systems for string diagrammatic theories which feature a Frobenius algebra. This situation ubiquitously appear in various approaches: for instance, in the algebraic semantics of linear dynamical systems, Frobenius structures model the wiring of circuits; in categorical quantum mechanics, they model interacting quantum observables. Our work introduces a combinatorial interpretation of string diagram rewriting modulo Frobenius structures, in terms of double-pushout hypergraph rewriting. Furthermore, we prove this interpretation to be sound and complete. In the last part, we also see that the approach can be generalised to model rewriting modulo multiple Frobenius structures. As a proof of concept, we show how to derive from these results a termination strategy for Interacting Bialgebras, an important rewrite theory in the study of quantum circuits and signal flow graphs.
翻译:字符串图是一个强大和直观的图形语法, 起源于对称单相分类的研究。 在过去几年中, 它们发现在计算机科学、 物理、 控制理论、 语言学和生物学等不同领域的各种计算结构建模中应用。 在许多这样的建议中, 描述的系统的转换是仿制图表的重写规则。 这些发展要求字符串图重写有一个数学基础: 术语的重写理论是清楚的, 字符串图的二维性质带来了额外的挑战。 这个工作系统满意度和扩展了最近一系列铺设这种基础的会议文件。 作为第一步, 我们集中关注的是以Frobenius 代数为特点的字符串图理理论的重写系统。 这种情形在各种方法中无处不在地出现: 例如, 线性动态系统模型的代数结构, Frobenius 结构模拟电路由电路法的电路变法; 在直线度机械学中, 它们建模可模拟量数的校验工具可观测。 我们的工作将信号结构的推导结构推导成一个剧底结构, 重新解释, 我们的双版结构结构的翻结构, 我们的推导结构, 将最后的推导结构, 我们的推导结构, 我们的推导, 我们的推导为最后的推导, 我们的推导, 我们的推导的推导, 我们的推导结构图的推导, 我们的推导, 向的推导, 的推导, 我们的推导, 我们的推导, 我们的推导, 我们的推导, 推导, 我们的推导, 我们的推导, 推导, 推导, 我们的推导, 推导, 我们的推导, 推导, 推导, 推导, 推导的推导, 推导, 推导, 推导, 推导, 推导, 推导, 推导, 推导, 推导, 我们的推导, 推导, 推导, 推导的推导, 推, 推, 推, 推, 推导, 推, 推, 推, 推导, 推, 推, 推, 推, 推, 推,