Virtual try-on(VTON) aims at fitting target clothes to reference person images, which is widely adopted in e-commerce.Existing VTON approaches can be narrowly categorized into Parser-Based(PB) and Parser-Free(PF) by whether relying on the parser information to mask the persons' clothes and synthesize try-on images. Although abandoning parser information has improved the applicability of PF methods, the ability of detail synthesizing has also been sacrificed. As a result, the distraction from original cloth may persistin synthesized images, especially in complicated postures and high resolution applications. To address the aforementioned issue, we propose a novel PF method named Regional Mask Guided Network(RMGN). More specifically, a regional mask is proposed to explicitly fuse the features of target clothes and reference persons so that the persisted distraction can be eliminated. A posture awareness loss and a multi-level feature extractor are further proposed to handle the complicated postures and synthesize high resolution images. Extensive experiments demonstrate that our proposed RMGN outperforms both state-of-the-art PB and PF methods.Ablation studies further verify the effectiveness ofmodules in RMGN.


翻译:虚拟试运行(VTON)的目的是为在电子商务中广泛采用的个人图像提供参考目标衣物(VTON),在电子商业中广泛采用。 VTON的做法,如果依靠剖析器信息来掩盖个人的衣服并合成试运行图像,就可以将之严格分为Parser-Based(PB)和Parser-Free(PFF)两种。虽然放弃剖析器信息提高了剖析器方法的可适用性,但细节合成能力也被牺牲了。因此,对原始布料的综合图像的分心可能持续存在,特别是在复杂的姿态和高分辨率应用中。为了解决上述问题,我们建议采用名为区域面具指导网络(RMGN)的新型PFS方法。更具体地说,建议采用区域面具,将目标衣服和参照人的特征明确结合,以便消除长期分散的干扰。还进一步提议了态势感知力损失和多层次特征提取器来处理复杂的态势和合成高分辨率图像。广泛的实验表明,我们提议的RMGNGN在PB和PFPF方法中都超越了状态。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月7日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员