项目名称: 基于球调和分析理论的信号稀疏表示与重构算法
项目编号: No.61272023
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 曹飞龙
作者单位: 中国计量学院
项目金额: 62万元
中文摘要: 目前,在地震学、宇宙微波观测、脑医学模拟等诸多研究中,球面信号采集技术发展迅速,而其相应的处理技术却相对滞后,迫切需要发展新的理论与方法。基于压缩感知已成为当前信号处理中的重要技术和研究热点之一,本项目拟在球面上研究压缩感知的核心问题:球面信号的稀疏表示与重构算法。拟从球面的非欧几何这一特性入手,以球调和分析与函数逼近论为理论依据,依托压缩感知的理论框架,紧密结合球调和展开与球面多项式的特性,利用稀疏逼近、球面宽度渐近表示、优化算法、误差分析等理论与方法,主要研究内容包括:改进和发展经典的球面调和分析与逼近论方法,建立球面信号稀疏表示的条件与特征刻画理论,提出稀疏球面调和多项式、带函数等构造方法,给出球面稀疏信号的在线字典学习算法等,从而构建球面压缩感知的理论框架。本项研究的完成可望为球面信号分析与应用提供理论基础,为诸多应用领域提供有效的研究方法,并进一步推动交叉学科的发展。
中文关键词: 稀疏性;重构算法;球面;调和分析;非线性逼近
英文摘要: Technology of sampling spherical signals is rapidly developing in many applications such as seismology, cosmic microwave observations, brain medical simulation and so on. But its corresponding processing methods are relatively behind, which needs to develop new technologies for processing spherical signals. Since compressed sensing has become one of the most important techniques and hotspots in information processing, this project will focus on the core issues of compressed sensing on the sphere: sparse representation of spherical signals and reconstruction algorithms based on the specialities of non-Euclidean spherical geometry, theories of spherical harmonic analysis and function approximation, frame of compressed sensing, spherical harmonic expansion and spherical polynomials, methods of sparse approximation, asymptotic representation of spherical width, optimization algorithm and error analysis. This project researches the following contents to construct a theoretical framework for spherical compressed sensing: improve and develop the classical harmonic analysis and approximation theory, establish the conditions of sparse representation and characterization theory of spherical signals, propose constructive methods of sparse spherical harmonic polynomial and ridgt functions, and give the online dictionary lea
英文关键词: sparseness;algorithm of reconstruction;sphere;harmonic analysis;nonlinear approximation