This paper focuses on reduced-order models (ROMs) built for the efficient treatment of PDEs having solutions that bifurcate as the values of multiple input parameters change. First, we consider a method called local ROM that uses k-means algorithm to cluster snapshots and construct local POD bases, one for each cluster. We investigate one key ingredient of this approach: the local basis selection criterion. Several criteria are compared and it is found that a criterion based on a regression artificial neural network (ANN) provides the most accurate results for a channel flow problem exhibiting a supercritical pitchfork bifurcation. The same benchmark test is then used to compare the local ROM approach with the regression ANN selection criterion to an established global projection-based ROM and a recently proposed ANN based method called POD-NN. We show that our local ROM approach gains more than an order of magnitude in accuracy over the global projection-based ROM. However, the POD-NN provides consistently more accurate approximations than the local projection-based ROM.
翻译:本文侧重于为高效处理具有作为多种输入参数变化值的双向组合值解决方案的PDE所建立的减序模型(ROMs)。首先,我们考虑一种称为当地ROM的方法,这种方法使用k- means 算法来分组截图和构建每个组群的当地POD基地。我们调查了这种方法的一个关键成分:当地基础选择标准。比较了几项标准,发现基于回归人工神经网络的标准为显示超临界干法双向的频道流问题提供了最准确的结果。然后,我们用同样的基准测试将当地ROM方法与回归ANN的选择标准与既定的基于全球投影的ROM和最近提议的基于ANN的方法(POD-NN)进行比较。我们显示,我们本地ROM方法比基于全球投影的ROM在准确度上取得了更多的程度。然而,POD-NN提供了比基于本地投影的ROM一致更准确的近似值。