Cross-domain object detection is challenging, because object detection model is often vulnerable to data variance, especially to the considerable domain shift between two distinctive domains. In this paper, we propose a new Unbiased Mean Teacher (UMT) model for cross-domain object detection. We reveal that there often exists a considerable model bias for the simple mean teacher (MT) model in cross-domain scenarios, and eliminate the model bias with several simple yet highly effective strategies. In particular, for the teacher model, we propose a cross-domain distillation method for MT to maximally exploit the expertise of the teacher model. Moreover, for the student model, we alleviate its bias by augmenting training samples with pixel-level adaptation. Finally, for the teaching process, we employ an out-of-distribution estimation strategy to select samples that most fit the current model to further enhance the cross-domain distillation process. By tackling the model bias issue with these strategies, our UMT model achieves mAPs of 44.1%, 58.1%, 41.7%, and 43.1% on benchmark datasets Clipart1k, Watercolor2k, Foggy Cityscapes, and Cityscapes, respectively, which outperforms the existing state-of-the-art results in notable margins. Our implementation is available at https://github.com/kinredon/umt.
翻译:跨域天体探测具有挑战性, 因为对象探测模型往往容易受数据差异的影响, 特别是两个不同领域之间的显著领域变化。 在本文中, 我们提出一个新的跨域天体探测的无偏见平均教师( UMT) 模型。 我们发现, 在跨域情景中, 简单平均教师( MT) 模型往往存在相当的模型偏差, 并消除模型偏差, 采用若干简单但非常有效的战略。 特别是, 对于教师模型, 我们提议一种跨部蒸馏方法, 供MT最大限度地利用教师模型的专长。 此外, 对于学生模型, 我们通过增加具有像素水平适应性的培训样本来减轻其偏差。 最后, 在教学过程中, 我们采用一个分配外估计战略, 选择最适合当前模型的样本, 以进一步加强交叉蒸馏进程。 通过处理模型偏差问题, 我们的UMT模型在基准数据集Clipartk、Waterkinkin、Wacal2、Focal2和Foberforests, 分别存在于城市的Forest- 和Focalformabs- fal- beal- laus- laus- sal- laus- laus- laus- laus- lades- ex- ex- ex- ex- exupal- ex- ex- ex- ex- beal2, ex2, ex- ex- ex- ex- ex- sal- ex- sal- sal- sal- abus- lection- lection- lemental- sal- bebs- abs- sal- abs- sides- sal- sal- sal- sal- sal- sal- sal- res- res- s- s- lemental- abal- lection- abs- sal- side) ex- abs- sal- abal- sal- abs- sal- sal- sal- sal- sal- sal- sal- sal- abal- sal- sal- s- abal- s- s-