Federated learning has become a popular tool in the big data era nowadays. It trains a centralized model based on data from different clients while keeping data decentralized. In this paper, we propose a federated sparse sliced inverse regression algorithm for the first time. Our method can simultaneously estimate the central dimension reduction subspace and perform variable selection in a federated setting. We transform this federated high-dimensional sparse sliced inverse regression problem into a convex optimization problem by constructing the covariance matrix safely and losslessly. We then use a linearized alternating direction method of multipliers algorithm to estimate the central subspace. We also give approaches of Bayesian information criterion and hold-out validation to ascertain the dimension of the central subspace and the hyper-parameter of the algorithm. We establish an upper bound of the statistical error rate of our estimator under the heterogeneous setting. We demonstrate the effectiveness of our method through simulations and real world applications.
翻译:联邦学习已成为当今大数据时代流行的工具。 它在保留数据分散的同时, 培训了一个基于不同客户的数据的集中模型。 在本文中, 我们首次提出一个联合的稀小片反反回归算法 。 我们的方法可以同时估计中央维度减少子空间, 并在一个联合环境下执行变量选择 。 我们通过安全和无损地构建共变矩阵, 将这个联合的高维稀小片反回归问题变成共振优化问题 。 然后, 我们用一种线性交替的乘数算法来估算中央子空间 。 我们还给出了贝叶斯信息标准和屏蔽验证, 以确定中央亚空间的尺寸和超参数 。 我们在混合环境中将我们估算器的统计误差率设定为上限 。 我们通过模拟和真实世界应用来展示我们的方法的有效性 。