High-dimensional linear models have been extensively studied in the recent literature, but the developments in high-dimensional generalized linear models, or GLMs, have been much slower. In this paper, we propose the use an empirical or data-driven prior specification leading to an empirical Bayes posterior distribution which can be used for estimation of and inference on the coefficient vector in a high-dimensional GLM, as well as for variable selection. For our proposed method, we prove that the posterior distribution concentrates around the true/sparse coefficient vector at the optimal rate and, furthermore, provide conditions under which the posterior can achieve variable selection consistency. Computation of the proposed empirical Bayes posterior is simple and efficient, and, in terms of variable selection in logistic and Poisson regression, is shown to perform well in simulations compared to existing Bayesian and non-Bayesian methods.


翻译:近代文献对高维线性模型进行了广泛研究,但高维通用线性模型(即GLMs)的发展速度要慢得多,在本文中,我们提议使用经验性或数据驱动的先期规格,导致经验性贝耶斯后方分布,可用于在高维GLM中估计和推断系数矢量,以及用于选择变量。关于我们建议的方法,我们证明后方分布以最佳速率集中在真实/偏差系数矢量周围,此外,还提供了后方能够实现可变选择一致性的条件。对拟议的经验性贝耶斯后方分布的计算简单而有效,在物流和普瓦森回归的可变选择方面,与巴耶斯和非拜耶斯方法相比,在模拟中表现良好。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员