This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients on the observed covariates. First, the model is embedded within the standard two-dimensional panel framework and restrictions are derived under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters, but at potentially slow rates of convergence. The second approach utilises popular machine learning techniques to develop group fixed-effects and kernel weighted fixed-effects that are more robust to the multidimensional nature of the problem and can achieve the parametric rate of consistency under certain conditions. Theoretical results and simulations show the benefit of standard two-dimensional panel methods when the structure of the interactive fixed-effect term is known, but also highlight how the group fixed-effects and kernel methods perform well without knowledge of this structure. The methods are implemented to estimate the demand elasticity for beer under a handful of models for demand.
翻译:本文研究三个或三个以上层面的多维面面板数据的线性、添加式分离模型,具有未观测到的互动固定效应。在估计观察到的共差系数时,考虑两种方法来说明这些未观察到的交互式固定效应。首先,模型嵌入标准的二维面面板框架,并作出一些限制,根据这些限制,Bai(2009年)的要素结构方法可得出对模型参数的一致估计,但可能趋同速度较慢。第二种方法利用流行的机器学习技术,开发组群固定效应和内核加权固定效应,这些效应对于问题的多维性质更为强大,在某些条件下可以达到一致性的参数率。理论结果和模拟表明,当知道互动固定效应术语的结构时,标准两维面板方法的好处,但也突出小组固定效应和内核方法如何在不了解这一结构的情况下很好地发挥作用。采用这些方法,根据少数需求模型估计啤酒的需求弹性。</s>