Collaborative robots (cobots) built to work alongside humans must be able to quickly learn new skills and adapt to new task configurations. Learning from demonstration (LfD) enables cobots to learn and adapt motions to different use conditions. However, state-of-the-art LfD methods require manually tuning intrinsic parameters and have rarely been used in industrial contexts without experts. In this paper, the development and implementation of a LfD framework for industrial applications with naive users is presented. We propose a parameter-free method based on probabilistic movement primitives, where all the parameters are pre-determined using Jensen-Shannon divergence and bayesian optimization; thus, users do not have to perform manual parameter tuning. This method learns motions from a small dataset of user demonstrations, and generalizes the motion to various scenarios and conditions. We evaluate the method extensively in two field tests: one where the cobot works on elevator door maintenance, and one where three Schindler workers teach the cobot tasks useful for their workflow. Errors between the cobot end-effector and target positions range from $0$ to $1.48\pm0.35$mm. For all tests, no task failures were reported. Questionnaires completed by the Schindler workers highlighted the method's ease of use, feeling of safety, and the accuracy of the reproduced motion. Our code and recorded trajectories are made available online for reproduction.
翻译:与人类一起工作的合作机器人( 机器人) 必须能够快速学习新的技能, 适应新的任务配置。 从演示( LfD) 学习使cobot 能够学习并适应不同的使用条件。 然而, 最先进的LfD 方法需要手工调整内在参数, 并且很少在没有专家的情况下在工业环境中使用。 在本文中, 为与天真的用户一起工作的工业应用程序开发和实施 LfD 框架 。 我们提出了一个基于概率运动原始的无参数方法, 所有参数都是使用詹森- 汉诺差异和刺刀优化预先确定的; 因此, 用户不必执行手动参数调整。 这个方法从小的用户演示数据集中学习动作, 并且将动作概括到各种情景和条件。 我们从两个实地测试中广泛评价了方法: 一个是电梯门维护的连接工作, 一个是3 Schindler 工人教授对工作流量有用的 Cobot 任务。 3个Schindler, 代码值最终值与目标定位位置之间的错误, 由 $0 m\ 任务周期 所记录到 任务复制的失败等级测试 Q 。