Modern scientific and technological advances allow botanists to use computer vision-based approaches for plant identification tasks. These approaches have their own challenges. Leaf classification is a computer-vision task performed for the automated identification of plant species, a serious challenge due to variations in leaf morphology, including its size, texture, shape, and venation. Researchers have recently become more inclined toward deep learning-based methods rather than conventional feature-based methods due to the popularity and successful implementation of deep learning methods in image analysis, object recognition, and speech recognition. In this paper, to have an interpretable and reliable system, a botanist's behavior is modeled in leaf identification by proposing a highly-efficient method of maximum behavioral resemblance developed through three deep learning-based models. Different layers of the three models are visualized to ensure that the botanist's behavior is modeled accurately. The first and second models are designed from scratch. Regarding the third model, the pre-trained architecture MobileNetV2 is employed along with the transfer-learning technique. The proposed method is evaluated on two well-known datasets: Flavia and MalayaKew. According to a comparative analysis, the suggested approach is more accurate than hand-crafted feature extraction methods and other deep learning techniques in terms of 99.67% and 99.81% accuracy. Unlike conventional techniques that have their own specific complexities and depend on datasets, the proposed method requires no hand-crafted feature extraction. Also, it increases accuracy as compared with other deep learning techniques. Moreover, SWP-LeafNET is distributable and considerably faster than other methods because of using shallower models with fewer parameters asynchronously.


翻译:现代科技进步使植物学家能够使用基于计算机的视觉方法来完成植物识别任务。 这些方法本身也具有挑战性。 叶片分类是用于自动识别植物物种的计算机视野任务,由于叶叶型形态的变化,包括其大小、纹理、形状和变异,这是一项严峻的挑战。 研究人员最近更倾向于采用基于深层次的学习方法,而不是传统的基于特征的方法。 由于在图像分析、物体识别和语音识别方面采用并成功采用深层次的学习方法,因此,由于在图像分析、对象识别和语音识别方面采用广受欢迎和成功实施,因此,植物学家的行为是用来进行深层次精确的系统定位的模型,通过三种基于深层次学习的模型,提出一种高效的、最大行为相似性的方法。 三种不同层次的模型被视觉化,以确保植物学家的行为是精确的。 第一和第二个模型是从零开始设计的。 在第三个模型中,先经过训练的模型不易变异于传输-学习技术。 提议的方法是用两种众所周知的数据集成的系统来评估: Flavia 和 MalayaKew- kew 。 另一层次的精确方法是用来进行较精确的精确的提取方法, 。 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员