项目名称: 电子束选区熔化快速成型Nb-Si基超高温合金的高温抗氧化机理研究
项目编号: No.51471013
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 一般工业技术
项目作者: 贾丽娜
作者单位: 北京航空航天大学
项目金额: 80万元
中文摘要: Nb-Si基超高温合金有潜力作为在1200℃~1400℃使用的超高温结构材料,然而其高温抗氧化性能不足阻碍了合金的应用。通过合金化可以有效提高合金基体的抗氧化性,但同时引入了更多的大块硅化物相和脆性相Cr2Nb相,导致室温和高温力学性能下降。组织细化是兼顾合金力学性能与抗氧化性能切实有效的途径。本项目采用电子束选区熔化快速成型制备具有超细组织的Nb-Si基多元合金,研究合金在不同高温条件下的氧化动力学,明确氧化过程中组织演变对氧化物结构、形貌、分布的影响,探究氧化物的形成机理,构建氧化膜的生长模型;组织细化后,氧化物内应力变化及其对合金粘附性的影响;阐明氧化过程中合金化元素在氧化膜与合金之间的互扩散作用及与氧的结合能力对表面合金元素浓度的影响,进而根据Wanger理论研究其对氧化产物组织、合金内氧的扩散通道和固溶度的影响;揭示组织细化对提高Nb-Si基合金高温抗氧化性能的作用机理。
中文关键词: Nb-Si基超高温合金;快速成型;高温抗氧化;组织细化;快速凝固
英文摘要: Niobium-silicide based alloys have the potential to applied in the hottest section of the advanced turbine engines in temperature interval 1200-1400℃. However, the catastrophic behavior under oxidizing environments of niobium-based alloys has been a major barrier to their use for high-temperature applications. Although adding alloying elements can enchance the high temperature oxidation resistance of the Nb-Si based alloy, the appearance the big block-like Nb5Si3 and brittle Cr2Nb phases has dentrimental effect on the high- and low- temperature mechanical properties. Microstructure refinement could effectively improve the oxidation resistance and mechanical properties. Electron beam selective melting rapid solidification is adopted to produce the Nb-Si based alloys with super refine microstructure. The oxidation behavior of Nb-Si based alloys in static air at 1250℃ and 1300℃ will be studied. The main objective of this work focuses on the effects of refinement on the oxidation resistance mechanism. The structure, morphology, size and distribution of the oxide will be analyzed. Growth model at different temperature of the oxide will be build. Adhesion force between the substrate and oxide will be calculated. The interdiffusion behavior of alloying elements between substrate and oxide scale will be studied. The effects of alloying elements on the diffusion channels of oxygen and solid solubility will be studied by using the Wagner theory.
英文关键词: Nb-Si based alloy;rapid prototyping;high temperature oxidation resistance;microstructure refinement;rapid solidification