The current study of cell architecture of inflammation in histopathology images commonly performed for diagnosis and research purposes excludes a lot of information available on the biopsy slide. In autoimmune diseases, major outstanding research questions remain regarding which cell types participate in inflammation at the tissue level, and how they interact with each other. While these questions can be partially answered using traditional methods, artificial intelligence approaches for segmentation and classification provide a much more efficient method to understand the architecture of inflammation in autoimmune disease, holding a great promise for novel insights. In this paper, we empirically develop deep learning approaches that uses dermatomyositis biopsies of human tissue to detect and identify inflammatory cells. Our approach improves classification performance by 26% and segmentation performance by 5%. We also propose a novel post-processing autoencoder architecture that improves segmentation performance by an additional 3%.
翻译:目前对为诊断和研究目的通常进行的对组织病理学图象中发炎细胞结构的研究排除了生物精神切片上现有的大量信息。在自体免疫疾病中,关于哪些细胞类型在组织一级参与发炎,以及它们相互之间如何互动的主要未决研究问题依然存在。虽然这些问题可以使用传统方法部分解答,但分解和分类的人工智能方法提供了一种更高效的方法来理解自体免疫疾病中的发炎结构,为新的洞察提供了巨大的希望。在本文中,我们实证地发展了深层次的学习方法,利用人体组织的皮肤炎生物细胞来检测和识别炎细胞。我们的方法将分类性能提高26%,分解性能提高5%。我们还提出了一个新的后处理自动解剖结构,将分解性性能提高3%。