Advanced artificial intelligence and machine learning have great potential to redefine how skin lesions are detected, mapped, tracked and documented. Here, We propose a 3D whole-body imaging system known as 3DSkin-mapper to enable automated detection, evaluation and mapping of skin lesions. A modular camera rig arranged in a cylindrical configuration was designed to automatically capture images of the entire skin surface of a subject synchronously from multiple angles. Based on the images, we developed algorithms for 3D model reconstruction, data processing and skin lesion detection and tracking based on deep convolutional neural networks. We also introduced a customised, user-friendly, and adaptable interface that enables individuals to interactively visualise, manipulate, and annotate the images. The proposed system is developed for skin lesion screening, the focus of this paper is to introduce the system instead of clinical study. Using synthetic and real images we demonstrate the effectiveness of the proposed system by providing multiple views of a target skin lesion, enabling further 3D geometry analysis and longitudinal tracking. It takes only a few seconds to capture the entire skin surface, and about half an hour to process and analyse the images. Our experiments show that the proposed system allow fast and easy whole body 3D imaging. It can be used by dermatological clinics to conduct skin screening, detect and track skin lesions over time, identify suspicious lesions, and document pigmented lesions. The system can potentially save clinicians time and effort significantly. The 3D imaging and analysis has the potential to change the paradigm of whole body photography with many applications in skin diseases, including inflammatory and pigmentary disorders.


翻译:高级人工智能和机器学习极有可能重新定义如何检测、映射、跟踪和记录皮肤损伤。在这里,我们提议3D全体成像系统,称为3D-DSkin-mapper(3DSkin-mapper),以便能够自动检测、评估和测绘皮肤损伤。以圆柱形结构安排的模块化照相机,目的是自动从多个角度同步采集一个对象的整个皮肤表面的图像。根据图像,我们为3D模型的重建、数据处理和皮肤损伤的检测和跟踪制定了算法。我们还引入了一个定制的、方便用户的和可调适的界面,使个人能够对图像进行自动检测、评估和绘图。为皮肤损伤筛查开发了一个模块,其重点是引入系统而不是临床研究。我们用合成和真实的图像展示了拟议系统的有效性,提供了目标皮肤损伤模型的多重视角,进一步进行了3D色度分析和纵向跟踪。我们只需要几秒钟的时间来捕捉整个皮肤表面,大约半个小时的皮肤温度模型应用,包括快速的皮肤分析,并分析。我们展示了整个皮肤分析,我们所拟议的整个系统,可以大量地测量了整个皮肤分析。</s>

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员