For model piracy forensics, previous model fingerprinting schemes are commonly based on adversarial examples constructed for the owner's model as the \textit{fingerprint}, and verify whether a suspect model is indeed pirated from the original model by matching the behavioral pattern on the fingerprint examples between one another. However, these methods heavily rely on the characteristics of classification tasks which inhibits their application to more general scenarios. To address this issue, we present MetaV, the first task-agnostic model fingerprinting framework which enables fingerprinting on a much wider range of DNNs independent from the downstream learning task, and exhibits strong robustness against a variety of ownership obfuscation techniques. Specifically, we generalize previous schemes into two critical design components in MetaV: the \textit{adaptive fingerprint} and the \textit{meta-verifier}, which are jointly optimized such that the meta-verifier learns to determine whether a suspect model is stolen based on the concatenated outputs of the suspect model on the adaptive fingerprint. As a key of being task-agnostic, the full process makes no assumption on the model internals in the ensemble only if they have the same input and output dimensions. Spanning classification, regression and generative modeling, extensive experimental results validate the substantially improved performance of MetaV over the state-of-the-art fingerprinting schemes and demonstrate the enhanced generality of MetaV for providing task-agnostic fingerprinting. For example, on fingerprinting ResNet-18 trained for skin cancer diagnosis, MetaV achieves simultaneously $100\%$ true positives and $100\%$ true negatives on a diverse test set of $70$ suspect models, achieving an about $220\%$ relative improvement in ARUC in comparison to the optimal baseline.
翻译:对于海盗刑侦模型,以往的示范指纹鉴定计划通常基于为物主模型(\ textit{ finggerprint})所建的比对式范例,并核实一个嫌疑人模型是否确实与原始模型的原始模型发生盗版,将行为模式与指纹实例相匹配。然而,这些方法在很大程度上依赖分类任务的特点,这些特征妨碍将其应用于更一般的情景。为了解决这一问题,我们提出了MetaV,这是第一个任务-不可知性模型指纹鉴定框架,它使得能够对远离下游学习任务的更广大的DNNNN进行指纹鉴定,并展示出与各种所有权混淆技术相比的强大强力。具体来说,我们将以前的计划归纳为MetaV的两个关键设计组成部分:\ textit{adpative 指纹} 和\ textitleitutitle{me{meuction} 的特性特征特征特征特征特征特征特征特征特征。我们介绍一个可疑的模型是否被偷盗取,而该模型与下游学习的结果。作为关键,它们作为任务-nexicalalal dealalalalational dealalalation exalizationalalalal exalalalalalalal dealalality prilation press prilalalalalalalalal exalalalalal pral prilation exalizal prilation pralizalization press press press prilation prilation prilation press 只能算算算制成一个基础,只有在模型上,在模型上获得一个更好的模型上获得一个基础化的模型上的模型上的模型上的模型上的模型上,只有一个基础化的精确化的模型,只有一个基础化的模型,并且获得一个基础化的模型的模型,并且能实现一个基础化的模型,只有一个基础化的模型,在模型的精确化的精确化的精确化的模型的模型,并且制的模型,并且在模型的精确化,只有制的精确化。