We present FREDo, a few-shot document-level relation extraction (FSDLRE) benchmark. As opposed to existing benchmarks which are built on sentence-level relation extraction corpora, we argue that document-level corpora provide more realism, particularly regarding none-of-the-above (NOTA) distributions. Therefore, we propose a set of FSDLRE tasks and construct a benchmark based on two existing supervised learning data sets, DocRED and sciERC. We adapt the state-of-the-art sentence-level method MNAV to the document-level and develop it further for improved domain adaptation. We find FSDLRE to be a challenging setting with interesting new characteristics such as the ability to sample NOTA instances from the support set. The data, code, and trained models are available online (https://github.com/nicpopovic/FREDo).
翻译:我们提出FSDLRE(FSDLRE),这是少数文件级关系提取(FSDLRE)基准,与以判决级关系提取(FSDLRE)公司为基础的现有基准相反,我们认为,文件级公司提供了更多现实主义,特别是在无上方(NOTA)分布方面,因此,我们提出一套FSDLRE(FSDLRE)任务,并根据现有的两个受监督的学习数据集(DocRED和SciERC)建立一个基准。我们把最新的判刑级MNAV(MNAV)方法适应文件级,并进一步加以发展,改进域的适应性。我们发现FSDLRE(FSDLRE)是一个富有挑战性的环境,具有有趣的新特点,例如能够从成套支助中取样NOA案例。数据、代码和经过培训的模式可以在线查阅(https://github.com/nicpoovic/FREdoo)。