Deep learning (DL) techniques have been used to support several code-related tasks such as code summarization and bug-fixing. In particular, pre-trained transformer models are on the rise, also thanks to the excellent results they achieved in Natural Language Processing (NLP) tasks. The basic idea behind these models is to first pre-train them on a generic dataset using a self-supervised task (e.g, filling masked words in sentences). Then, these models are fine-tuned to support specific tasks of interest (e.g, language translation). A single model can be fine-tuned to support multiple tasks, possibly exploiting the benefits of transfer learning. This means that knowledge acquired to solve a specific task (e.g, language translation) can be useful to boost performance on another task (e.g, sentiment classification). While the benefits of transfer learning have been widely studied in NLP, limited empirical evidence is available when it comes to code-related tasks. In this paper, we assess the performance of the Text-To-Text Transfer Transformer (T5) model in supporting four different code-related tasks: (i) automatic bug-fixing, (ii) injection of code mutants, (iii) generation of assert statements, and (iv) code summarization. We pay particular attention in studying the role played by pre-training and multi-task fine-tuning on the model's performance. We show that (i) the T5 can achieve better performance as compared to state-of-the-art baselines; and (ii) while pre-training helps the model, not all tasks benefit from a multi-task fine-tuning.


翻译:深度学习( DL) 技术已被用于支持数项与代码有关的任务, 如代码总和和和错误修正等。 特别是, 预先训练的变压器模型正在上升, 这也是由于它们在自然语言处理( NLP) 任务中取得了极佳的成果。 这些模型的基本想法是首先在通用数据集上进行预演, 使用自监督的任务( 例如, 填充句子中隐含的单词) 。 然后, 这些模型经过微调, 以支持一些感兴趣的具体任务( 如语言翻译)。 一个单一模型可以进行微调, 以支持多项任务, 可能利用转移学习的好处。 这意味着, 用于解决具体任务( 例如, 语言翻译) 获得的知识( 例如, 感知分类) 可以提高另一项任务的业绩。 虽然在 NLP 中已经广泛研究了传输学习的好处, 但当涉及到与模式有关的任务时, 经验证据是有限的。 在本文中, 我们评估了“ 文本- 国家转换器( T5) 模型的绩效, 用于支持四种不同的代码相关任务, 比较 T. (i) 和 自动变换码任务( ) 学习中, 进行 自动变码( 学习) 进行 学习中 进行 自动变码( ) 进行 进行 进行 进行 自动 自动 学习 学习 学习 学习 进行 进行 进行 进行 进行 高级 学习 进行 进行 进行 进行 进行 进行 进行 高级 的 的 学习 学习 学习 进行 进行 进行 进行 进行 进行 进行 进行 进行 算 进行 进行 进行 进行 进行 进行 进行 进行 进行 算 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行 进行

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2022年3月28日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员